Интерфейсы передачи данных применяемые на судах. Что понимать под интерфейсом

Лекция 4 Типы интерфейсов данных

Лекция 4

Тема: Типы интерфейсов данных

Данные в сетях передаются в виде пакетов или ячеек. Сначала использовалась передача пакетов, которая до сих пор остается наиболее распространенным методом передачи данных в локальных сетях. Передача ячеек (пакетов фиксированной длины) позволяет строить высокоскоростные каналы между локальными и глобальными сетями. Для каждого метода передачи необходимы специальные интерфейсы, управляющие сетевыми коммуникациями на физическом уровне. В следующих разделах описываются и сравниваются используемые в сетях пакеты и ячейки, а также предназначение для них интерфейсы.

Передача пакетов

Данные передаются от узла к узлу в виде больших фрагментов, называемых пакетами или фреймами. Коммуникационное программное обеспечение каждого узла разбивает данные на такие фрагменты. В зависимости от передающей среды, фрагмент данных преобразуется в электрический, радио- или световой сигнал, который и может быть передан между узлами. Требуется много пакетов данных, чтобы передать страницу текста или файл.

Формат пакетов определяется используемым в сети протоколом. Например, протокол определяет способ указания адреса узла, посылающего пакет, адреса принимающего узла, типа передаваемых данных, размера пакета, объёма передаваемых данных и метода обнаружения поврежденных пакетов или коммуникационных ошибок. Другой важной частью пакета является синхронизирующая информация для передачи множества пакетов, позволяющая отсылать пакеты через заданные интервалы времени. На рис.1 показан общий формат пакета.

Для физической передачи пакетов в сеть служит карта сетевого интерфейса, или сетевой адаптер (networkinterface card, NIC). Сетевой адаптер позволяет подключить рабочую станцию, файл-сервер, принтер или другое устройство к сетевой передающей среде, например, к коаксиальному кабелю или витой паре. На одном конце адаптера располагается разъем (или коннектор), соответствующий типу сетевой среды.

Сетевой адаптер является приемопередатчиком, обеспечивающим канал передачи данных в сетевой среде. Его встроенные средства упаковывают во фрейм заголовок, исходный и целевой адреса, данные и хвостовик, а фрейм в виде законченного пакета передается в коммуникационную среду. Сетевой адаптер имеет алгоритмы для приема, распаковки, передачи и синхронизации данных, а также для управления конфликтами и ошибками. Программные алгоритмы, реализующие эти функции, хранятся в исполняемых и служебных файлах, называемых сетевыми драйверами. Для каждого сетевого адаптера необходимы определенные сетевые драйверы, соответствующие методу доступа к сети, формату инкапсуляции данных, типу кабельной системы и физической (MAC) адресации. В программных драйверах реализуются стандарты многоуровневых сетевых коммуникаций, заданные эталонной моделью OSI. Драйверы позволяют сетевому адаптеру выполнять передачу данных на Физическом (Уровень 1) и Канальном (Уровень 2) уровнях.

Передача ячеек

Обычно ячейка (cell) содержит фрагмент данных фиксированной длины в формате, пригодном для передачи с большими скоростями - от 155 Мбит/с до 1 Гбит/с и выше. Как показано на рис. 2 ячейка имеет заголовок(header), в котором содержится следующая информация:

Данные для управления потоком, координирующие передачу информации между исходным и целевым узлами;

Информация о маршруте и канале, позволяющая передавать данные по кратчайшему маршруту;

Признак, указывающий на то, содержит ли ячейка реальные данные или управляющую информацию для осуществления высокоскоростного соединения;

Сведения об ошибках.

Имеющая фиксированную длину полезная нагрузка ячейки отличается реальных данных, содержащихся в пакете. В зависимости от протокола, Л кеты содержат данные переменной длины, которая кратна байту (8 битам) Например, данные в пакете распространенного стандарта Ethernet может иметь длину от нескольких сот до нескольких тысяч бит.

При асинхронном режиме передачи (asynchronous transfer mode, ATM) данные в ячейке всегда имеют длину 384 бита. Технология ATM (подробно описываемая в главе 8) представляет собой метод передачи данных, в котором ячейки и множество каналов используются для пересылки речевых сигналов, видео и данных в локальных и глобальных сетях. Фиксированная длина позволяет более точно синхронизировать передачу данных и обеспечить высокие скорости коммуникаций и качество обслуживания (Quality of Serve QoS). Качество обслуживания количественно описывает качество передачи данных, пропускную способность и надежность сетевой системы. Некоторые производители и телекоммуникационные компании предлагают для своих систем или оборудования гарантированное качество обслуживания.

В первую очередь ячейки используются в сетях ATM, поэтому интерфейсы данных состоят из коммутаторовATM, интерфейсов подключаемых устройств (AUI) и оптоволоконного кабеля. В составAUI-интерфейса входят приемопередатчик и сетевые драйверы, построенные по тем же принципам, что и драйверы для сетевых адаптеров, однако ориентированные на соединения по коаксиальному кабелю, витой паре или оптоволокну.

Согласно спецификациям ATM Forum и TIA Fiber Division, LAN Section, для передачи ячеек в магистралях локальных сетей, работающих на скорости 622 Мбит/с и на расстояниях до 500 м, требуется одномодовый оптоволоконный кабель. Многомодовый кабель с полосой пропускания 500 МГц на 1 км является наиболее выгодным решением для резервных магистралей, обеспечивающих скорость до 100 Мбит/с на расстоянии до2000 м. Следовательно, наилучшая конструкция кабельной системы, удовлетворяющаяся современным и будущим требованиям к резервным магистралям, представляет собой комбинацию многомодовых (62,5/125FDDI Grade) и одномодомовых оптических кабелей. Такие решения можно рассматривать как пример комбинированной кабельной системы.

Обычно кабельная магистраль содержит от 18 до 48 многомодовых оптических кабелей. При добавлении от 6 до 12 одномодовых кабелей (имеющих чрезвычайно высокие показатели полосы пропускания) можно обеспечить совместимость с будущими высокоскоростными приложениями. Свободные (или темные) оптические кабели можно оставить не разведенными до тех пор, пока в них не появится необходимость. В большинстве проектов затраты на установку избыточных кабелей невелики по сравннию с общими расходами на монтаж и намного меньше, чем затраты на установку дополнительных кабелей в будущем.

ЛАБОРАТОРНАЯ РАБОТА № 13

Стандартные интерфейсы передачи данных компьютерных систем

Цель работы . Ознакомление с основными интерфейсами передачи данных компьютерных систем.

Задание:

1.Ознакомиться с основными интерфейсами.

2.Определить основные параметры интерфейсов (прерывания, порты ввода-вывода, DMA, скорость обмена данными).

ОСНОВНЫЕ СВЕДЕНИЯ

Интерфейс – коммуникационное устройство (или протокол), позволяющее одному устройствувзаимодействовать с другим. Устанавливает соответствие между выходом одного устройства и входом другого.

С появлением USB (Universal Serial Bus) постепенно уходят в прошлое оставшиеся со времен первых IBM PC реликты, связанные с архитектурой шины ISA: COM и LPT-порты, интерфейс подключения FDD. Чипсеты материнских плат, в которых отсутствует явная поддержка шины ISA, ныне занимают львиную долю рынка. Практически все современные чипсеты поддерживают интерфейс USB, в том числе новой спецификации 2.0. Архитектурой USB предусмотрена топология так называемой «звезды». То есть в системе должен быть корневой (ведущий) концентратор, к которому подключаются периферийные концентраторы, а к последним - устройства USB. Периферийные концентраторы могут подключаться друг к другу, образуя каскады. Всего через один корневой концентратор может быть подключено до 127 устройств (концентраторов и устройств USВ). Однако, учитывая относительно невысокую пропускную способность шины версии 1.0 (до 12 Мбит в секунду), что с учетом служебных расходов составит около 1 Мбайт в секунду, - оптимальным числом следует считать 4-5 устройств. При этом рекомендуется более скоростные устройства подключать ближе к корневому концентратору. Проблема низкой пропускной способности снимается с внедрением спецификации интерфейса USB 2.0, чья пиковая производительность достигает 480 Мбит/с. Такого значения вполне хватает для типичных USB-устройств: принтеров, офисных сканеров, цифровых фотокамер, джойстиков и прочих. Но все же для внешних накопителей, сканеров высокого класса, цифровых видеокамер требуется более скоростной интерфейс, например, SCSI.

Спецификация USB определяет две части интерфейса: внутреннюю и внешнюю. Внутренняя часть делится на аппаратную (собственно корневой концентратор и контроллер USB) и программную (драйверы контроллера, шины, концентратора, клиентов). Внешнюю часть представляют устройства (концентраторы и компоненты) USB. Для обеспечения корректной работы все устройства делятся на классы: принтеры, сканеры, накопители и т. д. Классы устройств и особенности их функционирования подробно описаны в спецификации USВ. При отклонении от этих требований могут возникнуть проблемы с загрузкой драйверов и подключением устройств. Напротив, точное следование спецификации позволяет создавать драйверы для любых устройств сторонним производителям программного обеспечения. Разделение устройств на классы происходит не по их целевому назначению, а по единому способу взаимодействия с шиной USВ. Поэтому драйвер класса принтеров определяет не его разрешение или цветность, а способ передачи (односторонний или двунаправленный) и форматирования данных, порядок инициализации при подключении. Данные по шине USB передаются в различных форматах. Самый простой способ заключается в передаче потока байтов с маркером. При этом маркер путешествует в направлении корневого концентратора от устройства к устройству, а данные передаются при наличии свободной полосы пропускания. Гарантированную полосу пропускания обеспечивает изохронный формат. В этом случае опрос синхронных устройств производится с частотой, требуемой для полосы пропускания. Также производится синхронизация тактовых частот приемника и передатчика. Изохронный режим чаще всего применяют для подключения звуковых устройств, которым требуется постоянная полоса пропускания. Формат прерываний применяют для устройств, работающих в реальном масштабе времени до наступления требуемого события. Опрос таких устройств происходит с фиксированной частотой, а передача данных осуществляется при получении сигнала о произошедшем событии. Формат управления является специфическим и служит для конфигурирования и управления концентраторами и устройствами. Процедура подключения периферии к шине USB происходит «в горячем режиме». Подключенное в свободный порт устройство вызывает перепад напряжения в цепи. Контроллер немедленно направляет запрос на этот порт. Присоединенное устройство принимает запрос и посылает пакет с данными о классе, затем ему присваивается уникальный идентификационный номер. Далее происходит автоматическая загрузка и активация драйвера устройства, его конфигурирование и, тем самым, окончательное подключение. Все, устройство готово к работе! Точно так же происходит инициализация уже подсоединенного и включаемого в сеть устройства.

Графическое обозначение

Порт PS/2

Названные в честь IBM PS/2 эти разъёмы сегодня широко используются в качестве стандартных интерфейсов для клавиатуры и мыши, но они постепенно уступают место USB.

В персональных компьютерах, начиная с AT, клавиатура подключается через разъем к специальному контроллеру (UPI-Universal Peripheral Interface) на системной плате. В самой клавиатуре имеется микроконтроллер, который соединен последовательным каналом с микросхемой универсального интерфейса периферийных устройств. Данные по каналу передаются пакетами по 11 бит, из которых 8 бит отведено под собственно данные, а остальные - под синхронизирующие и управляющие сигналы. Заметим, что последовательный интерфейс клавиатуры не совместим с последовательным интерфейсом RS-232C. Микросхема содержит собственную оперативную память и ПЗУ. Контроллер, установленный в клавиатуре, при нажатии на клавишу определяет координаты замкнутого контакта в матрице и передает контроллеру так называемый «скан-код». В свою очередь, контроллер преобразует поступивший скан-код и направляет его в процессор. Для этой операции монопольно используется линия запроса прерываний IRQ1. Интерфейс PS/2 отличается от AT только разъемом и контроллером, установленным на системной плате. Интерфейс PS/2 использует однополярный сигнал с уровнем +5 В. Передача данных происходит в синхронном режиме. Так как обычная мышь с последовательным интерфейсом RS-232C является асинхронной и для питания используется двуполярный сигнал, она не совместима с портом PS/2. Попытка подсоединить мышь RS-232C через переходник к порту PS/2 может привести к выходу ее из строя. Таким образом, через переходник к разъему PS/2 можно подключать только клавиатуру, а также те мыши RS-232, которые комплектуются специальным переходником.

Интерфейс IDE (ATA)

За долгую историю развития интерфейса IDE (Integtated Drive Electronics - электроника, интегрированная в накопитель) появилось множество обозначений его стандартов. Начнем с уже далеких 80-х годов, когда фирма IBM выпустила компьютер спецификации AT (Advanced Technology - передовая технология). Винчестер этого компьютера был подсоединен к 16-битной шине ISA и управлялся собственным контроллером. Крупнейший производитель жестких дисков фирма Western Digital предложила управляющую электронику встроить в сам винчестер. Согласованный стандарт на такой интерфейс получил название ATA (AT Attachment - подключение к AT) и обеспечил возможность модернизации путем простой замены (или добавления) жестких дисков. Чуть позднее появилось обозначение этого же интерфейса IDE. Ныне под аббревиатурой IDE часто подразумевают вообще все устройства, совместимые с интерфейсом ATА «сверху вниз»: Fast ATA, EIDE, Ultra ATА и прочие. Спецификация ATА определила, что к одному каналу можно подключать два устройства (Master и Slave). Установила режимы обмена данными РIO (0, 1, 2, 4, 5) и DMA (SW 0, 1. 2 и MW0).

Режим PIO (Programmed Input-Output - программный ввод-вывод) предусматривает участие центрального процессора в обмене данными между диском и оперативной памятью. В режиме DMA (Direct Memory Access - прямой доступ к памяти) устройство напрямую общается с системной памятью, перехватывая управление шиной. Протоколы SW (Single Word - однословный) и MW (Multi Word - многословный) определяют, в каком виде передаются данные. Номера режимов указывают на продолжительность цикла обмена и, тем самым, на скорость передачи данных (например, 1 - 240 нc, 2 - 180 нc). В сокращенном виде обычно это записывают так: SW2 DMA. MW1 DMA, PIO2 и т. д. Особенности 16-битной адресации шины ISA не позволяли поддерживать жесткие диски объемом свыше 528 Мбайт.

Интерфейс ATА не мог обеспечить подключения никаких других устройств, кроме жестких дисков. Между тем появились новые компоненты: дисководы CD-ROM, магнитооптика, стримеры, - каждый из которых оснащался собственным интерфейсом от производителя и обычно требовал подключения к слоту ISA уникальной карты расширения, несовместимой с другими устройствами. К тому же и скорость жестких дисков значительно выросла, и режимы, предусмотренные ATА, уже не удовлетворяли современным требованиям. Так появился стандарт на интерфейс ATА-2, который устанавливал более скоростные протоколы РIO (3 и 4), MW DMA (1 и 2), определял новый режим обмена данными Block transfer (передача блоками) и адресацию дискового пространства LBA (Logical Block Addressing - адресация логическими блоками). Кроме того, были расширены команды идентификации диска, выдающие информацию по системным запросам о характеристиках устройства. Как уже говорилось, интерфейс IDE/ATА даже в самых последних реализациях остается 16-битным. Шина же PCI, к которой подключены IDE-контроллеры чипсета материнской платы, является 32-разрядной. Поэтому контроллер составляет из двух переданных подряд 16-битных пакетов один 32-битный и пересылает его дальше по шине. Ясно, что даже в самом скоростном режиме 16-битный пакет, отправляемый с жесткого диска, тормозит работу системы. Именно поэтому для высокопроизводительных устройств предпочитают диски с интерфейсом SCSI. В 1997 г. был принят очередной стандарт АТА-3, фактически имевший, по сравнению с АТА-2, единственный новый элемент - так называемую технологию S.M.A.R.T. (Self-Monitoring Analysis and Reporting Technology - технология самотестирования и анализа). По режимам обмена данными АТА-3 полностью соответствует АТА-2. Существенным шагом вперед в развитии интерфейса стало появление протокола ATAPI (ATA Packet Interface - пакетный интерфейс АТА). Он обеспечивал подключение к каналу IDE компонентов, отличных от жестких дисков. При этом с точки зрения пользователя разницы в доступе к устройствам различного типа не было. Протокол АТАРI требует соответствующей поддержки со стороны BIOS, причем последние версии BIOS могут назначить любое устройство, присоединенное по протоколу ATAPI, загрузочным. Протокол вошел в новый стандарт ATA/ATAPI-4, утвержденный в 1998 г.

Протоколы обмена данными также пополнились новыми стандартами: режимом Ultra DMA mode 2 и режимом коррекции ошибок по контрольной сумме (CRC - Cyclic Redundancy Check). Кроме того, появились многозадачные режимы, то есть режимы параллельного выполнения команд и создания очередей двумя устройствами на одном канале IDE (правда, с существенными ограничениями). Жесткие диски ATA/ATAPI-4 выпускались под обозначением Ultra АТА-33. Достаточно стройную и целостную систему интерфейсов АТА, описанную выше, не преминули запутать конкурирующие между собой производители жестких дисков и других носителей информации. Для того чтобы выделить свою продукцию на рынке, они придумали собственные названия интерфейсов. Первой по этому пути пошла компания Seagate, придумавшая название Fast ATА. На самом деле ее продукт отличается от АТА-2 как раз отсутствием самых быстрых режимов обмена (РIO4 и MW2 DMA). Фирма Quantum «изобрела» название Fast АТА-2 для своего интерфейса, ничем не отличающегося по существу от стандарта АТА-2. Больше всех ситуацию запутала компания Western Digital, придумавшая обозначение EIDE (Enhanced IDE - улучшенный IDE). Этот термин и сейчас достаточно широко применяется в компьютерной индустрии. Если же попытаться определить отличия EIDE от АТА-2, то выясняются удивительные вещи. Оказывается, EIDE целиком включает все спецификации АТА-2 и протокола ATAPI. Таким образом, выражение «жесткий диск с интерфейсом EIDE» по смыслу равнозначно фразе «жесткий диск с интерфейсом АТА-2». Тогда чем же отличается EIDE? Дело в том, что WD придумала хост-адаптер Dual IDE/ATА, позволяющий использовать до четырех устройств. Однако такой адаптер никакого отношения к собственно стандарту на интерфейс IDE не имеет и является для любого компонента IDE/ATА внешним устройством, обеспечивающим обычное функционирование согласно стандартам.

В 1999 г. был принят стандарт ATA/ATAPI-5, а большинство производителей поддержали его реальными продуктами. Протокол Ultra АТА-66 нового стандарта оговаривал режим передачи данных со скоростью до 66 Мбайт/с (спецификация Ultra DMA mode 4). Для подключения таких дисков понадобились новые шлейфы (с чередованием сигнальных проводников и линий, замкнутых на «землю»), имеющие 80 проводников, совместимые, к счастью, с существующими 40-контактными разъемами IDE. Исследования, проводившиеся многими фирмами, позволили еще более расширить полосу пропускания устройств IDE, использующих новый 80-жильный шлейф. Так появилась спецификация АТА/ATAPI-6, определяющая требования к жестким дискам и интерфейсу с пиковой пропускной способностью до 100 Мбайт/с (режим Ultra DMA mode 5). В частности, предусмотрено увеличение LBA с 32 до 64 бит. Поддержка особых режимов передачи потокового видео, меры по уменьшению шумности дисков. Жесткие диски с интерфейсом АТА/ATAPI-6 сейчас представлены достаточно широко и обычно обозначаются продавцами как ATА-100. Возможности дальнейшего совершенствования параллельного интерфейса IDE, несмотря на появление жестких дисков UltraATA-133 практически исчерпаны и потому в качестве перспективного направления рассматривается последовательный интерфейс Serial АТА.

Официальная спецификация на Serial ATA появилась в 2002 году, а годом ранее были представлены первые жесткие диски с новым интерфейсом. Чипсеты на системных платах с поддержкой Serial ATA впервые увидели свет осенью 2002 года. Для прежних системных плат необходимо иметь отдельный контроллер, устанавливаемый в слот PCI, что означает ограничение производительности.

Главное отличие нового интерфейса состоит в принципиально ином - последовательном - способе обмена данными. Данные передаются по восьмижильному кабелю, уровень сигналов составляет 3,3 В. На сегодняшний день реализация интерфейса позволяет достичь пиковой пропускной способности 1,5 Гбит/с (примерно 187 Мбайт/с), однако разработчики обещают в ближайшем времени увеличить этот показатель вдвое. Таким образом, наконец-то полоса пропускания внешнего интерфейса будет соответствовать скорости внутренней передачи данных (между собственно диском и буфером) жестких дисков. Первой летом 2000 г. представила жесткий диск с интерфейсом Serial ATA фирма Seagate.

Интерфейс PCI

PCI (Peripheral Component Interconnect) - соединение внешних компонентов. Разработка интерфейса PCI происходило весной 1991 года в недрах корпорации Intel. Перспективные процессоры 80486 и Pentium требовали новой организации взаимодействия с периферийными компонентами. Инженеры Intel решили начать «с нуля» и в результате разработали шину, напрямую не связанную с системной. Так удалось обеспечить независимость интерфейса от конкретного типа процессора и его параллельную работу с несколькими устройствами PCI. Новый интерфейс оказался несовместимым ни с одним из предшествующих (ISA, VESA) и потребовал разработки набора системных микросхем. С целью обеспечить поддержку сторонних производителей Intel сделала архитектуру и спецификации PCI открытыми, поэтому вскоре образовалась группа заинтересованных организаций, создавшая и утвердившая спецификацию версии 2.1. Уточненная и усовершенствованная спецификация получила обозначение 2.2. Интерфейс PCI предусматривает тактовую частоту шины 33 МГц (вариант PCI 2.2 - до 66 МГц, PCI-X - до 133 МГц), что обеспечивает пиковую пропускную способность до 132 Мбайт/с (до 1064 Мбайт/с для 64-разрядных данных на частоте 133 МГц).

Интерфейс обеспечивает поддержку режима Bus Mastering и автоматической конфигурации компонентов при установке (Plug-and-Play). Все слоты PCI на материнской плате сгруппированы в сегменты, число разъемов в сегменте ограничено четырьмя. Если сегментов несколько, они соединяются посредством так называемых мостов (bridge). В настоящее время PCI является самым распространенным интерфейсом. С его помощью подключают к материнской плате устройства расширения: звуковые карты, контроллеры SCSI, модемы, карты видеозахвата, сетевые карты и прочие компоненты.

Длительная популярность PCI объясняется рядом преимуществ, предоставляемых интерфейсом по сравнению с его предшественниками.

· Во-первых, поддерживается синхронный обмен данными формата 32 или 64 бит. При этом используется метод мультиплексирования (передача адресов и данных по очереди по одним линиям), что позволило снизить число контактов в разъемах.

· Во-вторых, предусмотрена установка компонентов с уровнями сигналов 5В или 3,3В. «Ключи» (пластмассовые перемычки) на разъемах исключают установку плат в «чужой» слот. Возможно изготовление универсальных плат расширения, поддерживающих оба уровня сигналов (что сейчас и делает большинство производителей).

Комбинация частот шины 33 МГц или 66 МГц с разрядностью данных предоставляет достаточно широкий диапазон для выбора пропускной способности шины. Заметим, что при частоте 66 МГц допустим уровень сигнала только 3,3В (а устройства на 33 МГц могут выйти из строя на более высокой частоте).

Спецификация PCI требует поддержки компонентами режима Multiple Bus Mastering (многостороннее управление шиной). В таком режиме устройства перехватывают управление шиной и самостоятельно распределяют ее ресурсы. Специальный таймер, имеющийся на устройстве, определяет максимальное время, в течение которого возможен монопольный доступ.

Один канал контроллера PCI поддерживает до четырех слотов расширения. Для удвоения их числа применяется мост между парой контроллеров. Метод передачи данных по шине называют Linear Burst (метод линейных пакетов). То есть, данные при записи-чтении идут единым пакетом, так как адрес для каждого следующего байта автоматически увеличивается на единицу. Таким образом отпадает необходимость передавать адресный блок. Для ускорения передачи применяется кэширование: поддерживаются методы отложенной «write-back» и сквозной «write-through» записи.

Важной особенностью интерфейса PCI является поддержка протокола Plug-and-Play (PnP). Спецификацией 2.2 определены три типа ресурсов: диапазон памяти, диапазон ввода-вывода и так называемое «пространство конфигурации». Последний ресурс содержит три региона: заголовок (не зависит от конкретного типа устройства), блок устройства, пользовательский блок. Заголовок содержит информацию об изготовителе, классе устройства, другие служебные сведения.

В целом интерфейс PCI справлялся с возложенными на него задачами в рамках присущих ему ограничений. Те же задачи, которые он не мог решить (например, передача больших массивов графических данных с высокой скоростью), были ловко переброшены фирмой Intel на плечи других интерфейсов (например, AGP).

До недавнего времени шина PCI использовалась не только для карт расширения, но и соединяла мосты системного чипсета. Однако существенные ограничения по пиковой пропускной способности стали тормозить рост производительности компьютерной системы. В частности, появление жестких дисков спецификации ATА-100, сетевых карт Gigabyte Ethernet, адаптеров SCSI спецификации Ultra 160, требовало увеличения пропускной способности шины PCI в несколько раз. Попытки усовершенствовать шину вылились в принятие спецификации PCI-X.

64-разрядные слоты интерфейса спецификации PCI-X (поддерживающего тактовую частоту до 133 МГц и передачу данных по протоколам DDR и QDR) пока встречаются только на высокопроизводительных серверах и рабочих станциях, так как увеличение ширины шины и ее рабочих частот привело к значительному удорожанию системной платы. Вместе с тем сам принцип параллельной разделяемой шины себя уже изжил.

Таким образом, срок жизни шины PCI на платформе PC постепенно истекает. Ничего необычного в этом нет - похожая история произошла с шиной ISA, которую уже не встретишь на современных системных платах. Очевидно, что переход на новую локальную шину будет происходить постепенно и сравнительно безболезненно для обычного пользователя. В настоящее время основными претендентами являются интерфейс PCI Express (3GIO), разработанный корпорацией Intel, и шина HyperTransport, предлагаемая фирмой AMD. Причем HyperTransport уже поддерживается многими наборами системной логики.

Интерфейс HyperTransport

Высокоскоростная шина ввода-вывода HyperTransport (HT) предназначена для использования в компьютерных системах, прежде всего в качестве внутренней локальной шины. В сравнении с шиной PCI интерфейс HyperTransport позволяет снизить число проводников на системной плате, устранить задержки, связанные с монополизацией шины устройствами с низкой производительностью, уменьшить энергопотребление и в целом многократно повысить пропускную способность.

Физически технология HyperTransport базируется на улучшенной версии низковольтных дифференциальных сигналов (Low Voltage Differential Signaling, LVDS). Для всех линий (данных, управления, тактовых) используются шины с дифференциальным сопротивлением 100 Ом. Уровень сигнала составляет 1,2 В (в отличие от 2,5 В, установленных спецификацией IEEE LVDS). Благодаря этому длина шины может достигать 24 дюйма (около 61 см) при полосе пропускания на одной линии до 800 Мбит/с. Необходимо заметить, что спецификация HyperTransport предусматривает разделение «восходящих» (Upstream) и «нисходящих» (Downstream) потоков данных (асинхронность). Такой подход обеспечивает возможность существенного увеличения, тактовых частот по сравнению с существующими архитектурами, поскольку каждый сигнал LVDS функционирует в пределах своей физической линии. Кроме того, пакет, объединяющий адреса, команды и данные, всегда кратен 32 бит. Поэтому обеспечивается его безошибочная передача по масштабируемым каналам шириной от 2 до 32 бит. Это позволяет применять единую технологию HyperTransport для соединения потребителей ресурсов шины различной производительности: процессор, оперативная память, видеоконтроллер, низкоскоростные устройства ввода-вывода, используя в каждом случае минимально необходимое число линий. В целом пиковая пропускная способность соединения Hyper Transport достигает 12,8 Гбайт/с (по 6,4 Гбайт/с на нисходящий и восходящий каналы шириной 32 бит при частоте 800 МГц и передаче данных по фронту и спаду сигнала). Для сравнения укажем, что пиковая пропускная способность системной шины (200 МГц) процессора AMD Athlon составляет 2,128 Гбайт/с. Важной особенностью технологии HyperTransport является совместимость с устройствами PCI на уровне протоколов. То есть производителям оборудования не придется писать даже новых драйверов.

Интерфейс SCSI

Часто сравнивают интерфейс SCSI (читается - «скази») исключительно с интерфейсом IDE. На самом деле такое сравнение не совсем корректно: SCSI, в отличие от IDE, позволяет подключать не только носители информации. SCSI является универсальным интерфейсом и до появления IEEE1394 ему практически не было альтернативы в работе с высокоскоростными устройствами. Сегодня максимальная (теоретическая) скорость передачи информации по шине IDE составляет 133 Мбайт/с (протокол Ultra ATA-133), для нового интерфейса Serial ATA - до 150 Мбайт/с. Спецификацией Ultra320 SCSI предусмотрена скорость обмена до 320 Мбайт/с. Реальные преимущества SCSI особенно заметны в многозадачных операционных системах и при обработке непрерывных потоков данных (например, видео). Многие известные производители (в частности, Iwill) выпускают материнские платы со встроенными контроллерами SCSI, где для инициализации требуется собственная система SCSI BIOS. На материнских платах со встроенным контроллером она обычно присутствует в системной BIOS в качестве дополнения. На платах расширения помещают собственную микросхему BIOS. Возможен и вариант (в самых дешевых системах) отсутствия BIOS и обеспечения поддержки интерфейса исключительно драйверами операционной системы.

Стандартные функции SCSI BIOS весьма похожи на функции системной BIOS:

· настройка конфигурации адаптера;

· проверка поверхности жестких дисков;

· форматирование на низком уровне;

· настройка параметров инициализации устройств;

· задание номера загрузочного устройства;

· выбор загрузочного устройства и пр.

Для запоминания и хранения конфигурации SCSI-устройств служит микросхема флэш-памяти (функциональный аналог CMOS системной платы). В системе SCSI взаимодействие между устройствами осуществляется по принципу «отправитель-адресат». Отправитель инициирует запрос и, дождавшись ответа от адресата, начинает обмен данными. Каждое устройство в цепочке имеет уникальный идентификационный (ID) номер в диапазоне от 0 до 7 (в последних спецификациях от 0 до 31), который выставляется специальным переключателем, перемычкой или присваивается автоматически (в современных устройствах). Причем номер 7 по умолчанию присвоен SCSI хост-адаптеру. В свою очередь, устройства, входящие в компонент, имеющий ID, получают номер логического устройства - Logical Unit Number (LUN). Например, при подключении массива из нескольких жестких дисков он получит собственный ID, а каждый жесткий диск - собственный LUN. Таким способом можно выстраивать цепочки до 256 устройств. Хотя в реальных задачах такие конструкции вряд ли потребуются. Данные по шине SCSI передаются в синхронном или асинхронном режимах. В асинхронном режиме адресат подтверждает получение каждого байта, в синхронном - только пакета данных. Начиная со спецификации SCSI-2 появились сценарии, когда весь набор процедур обмена формируется в один пакет и передается целиком. Также возможно независимое выполнение команд устройством. Например, стримеру дается команда на перемотку, и затем он отключается от шины до окончания процесса. В настоящее время действуют несколько спецификаций SCSI, различающихся шириной шины, тактовой частотой, физическим типом интерфейса подключения. Самый первый вариант (SCSI-1) имел 8-битную шину, данные по которой передавались со скоростью 5 Мбайт/с. Последний, Ultra320 SCSI, позволяет передавать данные на скорости 320 Мбайт/с.

К сожалению, различие стандартов на уровень и формат сигналов, электрические характеристики устройств SCSI в разных спецификациях интерфейса существенно затрудняют подключение компонентов разного поколения. Хотя в принципе задача эта решаема в подавляющем большинстве случаев.

Интерфейс AGP

Фирма Intel, обнаружив, что дальнейшее повышение производительности персонального компьютера «упирается» в видеоподсистему, уже сравнительно давно предложила выделить для передачи потока видеоданных отдельную интерфейсную шину - AGP (Accelerated Graphics Port - ускоренный графический порт). Буквально за год этот стандарт вытеснил существовавшие ранее интерфейсы, использовавшиеся видеокартами: ISA, VLB и PCI. Главным преимуществом новой шины стала ее высокая пропускная способность. Если шина ISA позволяла передавать до 5,5 Мбайт/с, VLB -до 130 Мбайт/с (однако при этом чрезмерно загружала центральный процессор), а PCI до 133 Мбайт/с, то шина AGP теоретически имеет пиковую пропускную способность до 2132 Мбайт/с (в режиме передачи 32-разрядных слов).

Компания Intel разрабатывала интерфейс AGP для решения двух основных проблем, связанных с особенностями обработки ЗD-графики на персональном компьютере.

· Во-первых, трехмерная графика требует выделять как можно больше памяти для хранения данных текстур и Z-буфера. Чем больше текстурных карт доступно для ЗD-приложений, тем лучше выглядит картинка на экране монитора. Обычно для Z-буфера используют ту же память, что и для текстур. Разработчики видеоконтроллеров и раньше имели возможность использовать обычную оперативную память для хранения информации о текстурах и Z-буфере, но серьезным ограничением здесь выступала пропускная способность шины PCI. Ширина полосы пропускания PCI оказалась мала для обработки графики в режиме реального времени. Эту проблему компания Intel решила путем внедрения стандарта шины AGP.

· Во-вторых, интерфейс AGP обеспечивает прямое соединение между графической подсистемой и оперативной памятью. Таким образом, выполняются требования вывода ЗD-графики в режиме реального времени и, кроме того, более эффективно используется память буфера кадра (frame buffer), тем самым увеличивается скорость обработки 2D-графики. В действительности шина AGP соединяет графическую подсистему с контроллером системной памяти, разделяя доступ с центральным процессором компьютера. Через AGP возможно подключение единственного типа устройств - графических плат. При этом видеоконтроллеры, встроенные в материнскую плату и использующие интерфейс AGP, не подлежат модернизации. Для контроллера AGP конкретный физический адрес, по которому информация хранится в оперативной памяти, не имеет значения. Это является ключевым решением новой технологии, обеспечивая доступ к графическим данным как к единому блоку памяти.

Спецификация AGP фактически базируется на стандарте PCI версии 2.1, но отличается от него следующими основными особенностями, коренным образом влияющими на производительность:

· шина способна передавать два (AGP2x), четыре (AGP4x) или восемь (AGP8x) блоков данных за один цикл;

· устранена мультиплексированность линий адреса и данных (в PCI для удешевления материнских плат адрес и данные передаются по одним и тем же линиям);
конвейеризация операций чтения/записи, по мнению разработчиков, позволяет устранить влияние задержек в модулях памяти на скорость выполнения этих операций.

Шина AGP поддерживает все стандартные операции шины PCI, поэтому поток данных по ней можно представить как смесь чередующихся AGP и РСI-операций чтения/записи. Операции шины AGP являются раздельными (split). Это означает, что запрос на проведение операции отделен от собственно пересылки данных. Такой подход позволяет AGP-устройству генерировать очередь запросов, не дожидаясь завершения текущей операции. Версия AGP 2.0 благодаря использованию низковольтных электрических спецификаций предусматривает осуществление четырех транзакций (пересылок блока данных) за один такт (режим AGP4x). Версия AGP 3.0 предусматривает пересылку уже восьми блоков данных за такт (режим AGP 8x). В настоящее время, хотя даже возможности AGP4x еще не исчерпаны многими видеокартами, компания Intel продвигает новую спецификацию - AGP Pro. Основное отличие этого интерфейса заключается в возможности управления мощным энергопитанием.

К исходу 2002 года в массовом количестве появились чипсеты, поддерживающие интерфейс AGP версии 3.0 (иногда обозначается как AGP 8x). Двукратное увеличение пропускной способности достигнуто за счет повышения тактовой частоты шины до 66 МГц и применения нового уровня сигналов 0,8 В (в AGP 2.0 использовался уровень 1,5 В). Тем самым при сохранении основных параметров интерфейса удалось повысить пропускную способность шины примерно до 2132 Мбайт/с.

В связи со все более широким проникновением трехмерной графики в различные программные продукты в обозримой перспективе встает вопрос о повышении пропускной способности шины видеокарты. Претендентами на замену AGP выступают новые универсальные интерфейсы локальной шины: HyperTransport и PCI Express.

Стандарт Пропускная способность
AGP 1X 256 Мбайт/с
AGP 2X 533 Мбайт/с
AGP 4X 1066 Мбайт/с
AGP 8X 2133 Мбайт/с

Bluetooth

Единичная Bluetooth-система состоит из модуля, обеспечивающего радиосвязь, и присоединенного к нему хоста, в качестве которого может выступать компьютер или любое периферийное устройство. Bluetooth-модули обычно встраивают в устройство, подключают через доступный порт либо PC-карту. Поскольку все модули с точки зрения сети физически и функционально равноценны, от природы хоста можно абстрагироваться. Модуль состоит из менеджера соединений (link manager), контроллера соединений и приемопередатчика с антенной. Модули могут как соединяться по схеме «точка - точка», так и обеспечивать многоточечные соединения. Два связанных по радио модуля образуют пиконет (piconet). Причем один из модулей играет роль ведущего (master), второй - ведомого (slave). В пиконете не может быть больше восьми модулей: адрес активного участника пиконета, используемый для идентификации, является трехбитным. Уникальный адрес могут иметь семь ведомых модулей (ведущий не имеет адреса), а нулевой адрес зарезервирован для широковещательных (broadcast) сообщений. Для объединения больше восьми устройств в спецификацию введено понятие скэттернет (scatternet, рассеянная сеть). Скэттернет формируется из нескольких независимых пиконетов. Установить связь с модулем, подключенным к другому пиконету, может любой модуль сети, в том числе и ведущий.

Оптимальный радиус действия модуля - до 10м. Диапазон рабочих частот 2,402-2,483 ГГц. Коммуникационный канал Bluetooth имеет пиковую пропускную способность 721 Кбит/с. Для уменьшения потерь и обеспечения совместимости пиконетов частота в Bluetooth перестраивается скачкообразно (1600 скачков/с). Канал разделен на временные слоты (интервалы) длиной 625 мс (время между скачками), в каждый из них устройство может передавать информационный пакет. Для полнодуплексной передачи используется схема TDD (Time-Division Duplex, дуплексный режим с разделением времени). По четным значениям таймера начинает передавать ведущее устройство, по нечетным - ведомое.

Помимо полезных данных пакет содержит код доступа и заголовок. Имеется три вида пакетов: предназначенные только для голоса (обычно 64 Кбайт/с), только для данных и комбинированные. Для передачи разных пакетов предусмотрены два типа связей: асинхронная ACL (Asynchronous Connection-Less) и синхронная SCO (Synchronous Connection-Oriented). Разные пары ведущий-ведомый в пределах пиконета могут использовать различные типы связи. Более того, тип связи может по мере необходимости безо всяких ограничений меняться в течение сеанса связи.

ПОРЯДОК РАБОТЫ

Правой кнопкой мыши нажимаем на значок Мой компьютер, после чего в выпадающем меню выбираем Свойства. Перед нами появляется Свойства системы, где мы выбираем закладку Оборудование. В появившейся закладке нажимаем кнопку Диспечер устройств. Перед нами появляется окно, в котором приведен список всего установленного оборудования на данном компьютере, тут же можно изменить свойства любого устройства. Пример диспечера устройств приведен на рис. 1.

1. IDE ATA/ATAPI контроллеры - это устройства, которые управляют другими устройствами, например жестким диском или CD-ROM, а также поддерживают обмен данными между этими устройствами и компьютером.

Конфигурация контроллера предусматривает выделение необходимых для него системных ресурсов.

Интерфейс RS-232

Один из наиболее распространенных последовательных интерфейсов. Первоначально разработан для связи терминалов с центральным компьютером, в настоящее время широко применяется для обмена данными между ПК и одиночными микроконтроллерными устройствами. Интерфейс RS-232 предназначен для соединения двух устройств (рис. 21). Передатчик одного устройства соединяется с приемником другого, и наоборот, что обеспечивает полудуплексный режим передачи данных. Для управления подключенным устройством можно использовать дополнительные линии порта RS-232 или специальные символы, добавляемые к передаваемым данным.

Скорость передачи 19 200 бит/c

Протяженность линии связи 15 м

Вид сигнала потенциальный с общим проводом

Число передатчиков 1

Число приемников 1

Интерфейс RS-422

Интерфейс разработан в 1975 г. для обмена данными между центральным компьютером и периферийным оборудованием. Интерфейс использует симметричную линию связи (рис. 22) и обеспечивает работу удаленного оборудования с ускоренным обменом данными. Интерфейс обеспечивает хорошее подавление помех общего вида за счет использования витой пары в качестве линии связи. Каждый передатчик может быть нагружен на несколько приемников (до 10), что позволяет обмениваться одновременно с несколькими устройствами.


Скорость передачи 10 Мбит/c

Протяженность линии связи 1200 м

Вид сигнала дифференциальный, витая пара

Число передатчиков 1

Число приемников 10

Организация связи полный дуплекс, точка-точка.

Интерфейс RS-485

Интерфейс широко распространен в промышленности для двунаправленного обмена данными по симметричной двухпроводной линии связи с повышенной нагрузочной способностью и протяженностью (рис. 23). Применяется для организации сетей типа «звезда» или «кольцо». Применение ретрансляторов позволяет увеличить расстояние между абонентами и организовать новый сегмент сети.

Интерфейс CAN

Последовательный интерфейс CAN специально разработан для объединения датчиков, исполнительных устройств и интеллектуальных контроллеров, управляющих каким-либо объектом в системах промышленной автоматизации. На рис. 24 приведена схема построения МПС на основе специальной магистральной шины.

Основные преимущества интерфейса: обеспечение режима обмена в реальном масштабе времени благодаря возможности инициативной передачи сообщений, высокая помехоустойчивость и протокол с коррекцией ошибок.

Интерфейсы – это устройство, позволяющее производить обмен данными между источником и приемником.

Параллельный интерфейс .

Представляет собой n – разрядную шину, по которой параллельно вводятся или выводятся данные по линиям связей, каждая из которых имеет свой вес. По n-разрядной шине производится обмен данными между источником и приемником.

Допустим данные вводятся в ВУ из АЦП, тогда АЦП – источник, ВУ – приемник. Сигнал CS выбирается при совпадении адреса на ША установленного процесса и адреса присвоенного порту или устройству с которым происходит обмен данными. Устройства, адреса которых не совпадают с адресом устройств на ША, находятся в нейтральном состоянии («отдыхают»). Данные устанавливаются на ШД одновременно.

Данные маркируются по разрядам. В каждый разряд можно записать либо 0, либо 1. Номер разряда соответствует его весу. При объединении 4-х разрядов в 1-н знак, получим младший и старший разряд. Для того, что бы записать в разряд число, нужно сложить значение старшего и младшего разряда.

К параллельному интерфейсу относятся: внутренние шины (адресов, данных), интерфейс для принтера, для подключения внешних устройств, таких как ISA, PCI, AGP, LPT.

Достоинство: высокая скорость передачи информации.

Недостаток: Ограниченная длина линии связи, подверженность воздействию внешних помех, скорость передачи информации ограничена внутренней шиной.

Параллельные интерфейсы используются для обмена данными внутри ПК и внешним устройством, находящихся на небольшом расстоянии (LPT ~ 3м).

Если скорость обмена данными между процессором и внешним устройством не соответствует скорости, на которой работает процессор, используют буферезацию.

Буфер – это память, которая может обмениваться данными на скорости, соответствующей скорости внешнего устройства (заполнение буфера) и впоследствии обмениваться данными между буфером и процессором на скорости процессора.

Пример буферов: КЭШ память, буферная память в составе устройств ввода/вывода данных (платы с АЦП, видеокарты).

Последовательный интерфейс .

Данные передаются последовательно по одному проводу. К последовательным интерфейсам относятся: COM- порт, USB, PC/2 (мышка, клавиатура). Можно связывать между собой только два устройства.



Последовательные синхронные интерфейсы (ПСИ) – для передачи данных используются кроме линии данных линии тактовых импульсов (сигналов).

Чтение запись данных производится по фронту тактового импульса (-импульса синхронизации обмена данными).

Если к линии данных подключено более одного устройства, то выбор устройства, с которым производится обмен данными осуществляется специальным сигналом CS.

К этим интерфейсам относится: SPI, I 2 C

Эти интерфейсы применяются для обмена данными внутри ВУ, содержащих в своем составе микроконтроллер и некоторую периферию (АЦП, ЦАП, датчик температур) внутри прибора.

Последовательный асинхронный интерфейс (ПАН)

В составе ПАН нет сигналов синхронизации (нет CLK (тактовых сигналов)). Обмен данными осуществляется последовательной установкой на линию данных битов данных на равные интервалы времени.

Последовательные асинхронные полудуплексные интерфейсы

RxD – приемник,

TxD – передатчик.

Через равные интервалы времени передается состояние одного и того же разряда. В данном типе интерфейсов при передаче данных могут участвовать только 2 устройства (приемник и пердатчик).

1– стартовый импульс (синхронизирует процесс передачи);

2– передается байт данных (количество передаваемых бит 5-8);

3 – передается служебная информация (бит проверки на четность);

4– стоповые биты (минимум 2) – разделительные биты между последовательно передаваемыми посылками.

3+4 – служебные биты

Бит проверки на четность применяют для исключения случайных ошибок (значение бита равно 1 или 0 в информативном такте, значение устанавливается таким, чтобы общее число единиц было четным).

Если в байте три единицы, то бит четности = 1, если 6, то бит четности =0.

Стоповые биты определяют минимальный интервал времени между соседними посылками. Их может быть 1 или 2 в зависимости от принятого протокола обмена данными. Если посылка данных осуществляется через интервал времени больший чем интервал стоповых битов, то это не приводит к сбою передачи данных по интерфейсу, если меньше, то приводит.

Скорость передачи данных измеряется в [бод]. (1 бод = 1 бит/с).

Достоинства:

Для передачи данных требуется минимум проводов,

Хорошо работает на длинных дистанциях.

Проще сама реализация интерфейса.

Недостаток:

Т.к. данные идут последовательно, длина линии связи может составлять до сотен метров;

Скорость передачи данных меньше, чем у параллельного интерфейса (эту проблему можно решить за счет длительности тактов)

Использовался в первых телеграфных релейных линиях связи.

Последовательные асинхронные дуплексные интерфейсы

Дуплексный режим – одновременно информация передается в обе стороны. Источник и приемник имеют разные приоритеты.

Промышленный интерфейс RS-485 (Дуплексный режим)

Этот интерфейс позволяет подключать в одной ШД несколько устройств.

Master – означает что компьютер первым посылает запрос по линии связи RS-485, содержащей адрес устройства с которым будет вести обмен данными. Все устройства принимают этот запрос находясь в режиме ожидания, и то устройство адрес которого совпадает с заданным ПК номером принимает или передает данные в соответствии с установленным протоколом обмена данных.

Как правило все устройства - исполнительные механизмы.

RS-422 (Полудуплексный режим)

tком > tуп

tком – время посылки между командами

tуп – время передачи данных любого из устройств (длительность ответа n-го устройства для исключения конкуренции сигналов по линии передачи данных).

Для преобразования сигналов служат специализированные преобразователи. Устройства преобразования сигналов интерфейсов RS-422, RS-485 имеют в своем составе гальваническую развязку. Передача данных по линиям интерфейсов RS-422, RS-485 осуществляется по 2-м проводам с использованием дифференциальной линии связи для уменьшения влияния внешних проводов.

Data+ Data- Rs-485
TxD+ TxD- RxD+ RxD- RS-422

Длина линии связи может достичь до 1 км с использованием стандартного устройства преобразования.

Типы устройств ввода/вывода

1.Устройства, устанавливаемые на шину компьютера (PSI ,ISA). Имеют связь непосредственно с внутренней шиной, достаточно быстро могут вводить информацию.

2. Внешние устройства (COM – port, LPT – port, USB - port). Устройство вывода преобразует цифровой код в напряжение. Платы цифрового (дискретного) вывода информации применяются для управления оборудованием по принципу «включен/выключен».

В состав современных плат ввода - вывода сигнала может быть включен Digital Signal Processor (DSP – цифровой сигнальный процессор). Он выполняет функцию предварительной обработки вводимых сигналов.

Может осуществлять мультиплексирование подаваемых на АЦП данных; цифровую фильтрацию данных (удаление помех), частотный анализ сигнала (строится путем преобразований Фурье).

Характеристики устройств ввода/вывода

Характеристики для АЦП:

Количество разрядов;

Максимальное входное напряжение (Существует ряд стандартных максимальных напряжений: 1; 2,5; 5; 10 В);

Полярность (однополярный: U=0÷Umax, двухполярный: U=-Umax÷Umax);

Наличие мультиплексера (предназначен для переключения каналов и определения, с какого канала пойдет сигнал на АЦП)

При наличии мультиплексера появляется такой параметр, как частота преобразования канала АЦП. В паспорте АЦП указывается общая частот преобразования. Поэтому, если f p - частота преобразования, указанная в паспорте, то часта преобразования одного канала: f канала =f p /m, где m – число каналов.

Наличие гальванической развязки (применяется для разделения нулевых потенциалов работы вычислительных и внешних устройств);

Объем буферной памяти (для высокочастотных систем).

При записи происходит потеря информации, т.к. скорость записи меньше скорости считывания.

Во многих АЦП есть возможность подключения дифференциального сигнала.

Интерфейсы передачи данных развиваются так быстро, что производителям систем хранения данных сложно за ними успевать. Каждый год появляются интерфейсы, позволяющие достичь скорости передачи данных во много раз большей, чем уже существующие устройства. Коммутаторы и сетевые адаптеры начинают поддерживать новейшие скоростные интерфейсы задолго до того, как они становятся доступными в системах хранения данных.

В таблице ниже показано развитие пропускных способностей интерфейсов подключения СХД на временной шкале.

Тенденции развития интерфейсов

Ниже описаны предполагаемые годы появления новых скоростей передачи данных для различных интерфейсов, основанные на исследованиях отрасли. История показывает, что для многих интерфейсов цикл разработки новых стандартов составляет 3-4 года.

Стоит отметить, что с момента утверждении спецификации нового интерфейса и до появления на рынке поддерживающих его продуктов проходит обычно несколько месяцев. Широкое распространение нового стандарта может затянуться на несколько лет.

Также сейчас ведется работа по разработке версий уже существующих интерфейсов с пониженным энергопотреблением.

Fibre Channel

32Gbps FC (32GFC)

Работа над стандартом 32GFC, FC-PI-6, началась в начале 2010 года. В декабре 2013 ассоциация Fibre Channel Industry Association (FCIA) сообщила о завершении работы над спецификацией. Ожидается, что продукты, поддерживающие этот интерфейс, появятся на рынке в 2015 или 2016 годах. 32GFC будет использовать 25/28G SFP+ коннектор.

Мультиканальный интерфейс FC 128Gb, известный как 128FCp (параллельный четырехканальный), основывается на технологии FC 32Gb и добавлен в официальный план развития стандарта FC. Комитет T11 присвоил проекту название FC-PI-6P. Завершение спецификации планируется на конец 2014 - начало 2015 года, продукты станут доступны в 2015 или 2016 году. 128GFCp, вероятно, будет использовать коннекторы QSFP+, возможна также поддержка CFP2 или CFP4 коннекторов.

Некоторые производители представляют 32GFC и 128GFC как «Gen 6» Fibre Channel, так как эта версия поддерживает 2 различные скорости передачи данных в двух различных конфигурациях (последовательной и параллельной).

64Gbps FC (64GFC), 256Gbps FC (256GFC)

Разработка стандартов 64GFC и 256GFC началась в проекте FC-PI-7. Техническая стабильность ожидается в 2017 году. Каждая ревизия FC обратно совместима как минимум с двумя предыдущими поколениями.

FC как интерфейс SAN

По-видимому, Fibre Channel в обозримом будущем будет оставаться основной технологией для построения сетей SAN. За прошедшие годы в инфраструктуру FC были инвестированы значительные средства (миллиарды долларов США), в основном, в центры обработки данных, которые будут функционировать в течение еще многих лет.

FC как дисковый интерфейс

Fibre Channel как интерфейс для подключения дисков уходит в прошлое, так как производители дисков корпоративного класса переходят на 6Gbps SAS и 12Gbps SAS. Из-за довольно большого объема выпущенных 3.5-дюймовых дисков с интерфейсом FC, использующихся в корпоративных дисковых подсистемах, ожидается, что FC будет использоваться еще некоторое время для их поддержки. Среди 2.5-дюймовых дисков интерфейс Fibre Channel, скорее всего, будет доступен на очень небольшом числе устройств.

Fibre Channel over Ethernet

FCoE (FC-BB-6)

Работа над стандартом FC-BB-6 была завершена комитетом T11 в августе 2014 года. FC-BB-6 стандартизирует архитектуру VN2VB и улучшает масштабируемость Domain_ID.

VN2VN — это способ соединить напрямую конечные узлы FCoE (Virtual N_Ports) без необходимости в FC или FCoE коммутаторах (FC Forwarders), что позволяет упростить конфигурацию в небольших размещениях. Эту идею иногда называют «Ethernet Only» FCoE. В таких сетях не требуется зонирование, что дает меньшую сложность и уменьшает расходы.

Масштабируемость Domain_ID (Domain_ID Scalability) позволяет FCoE фабрикам масштабироваться до более крупных SAN.

40Gbps и 100Gbps

До появления 40Gbps FCoE остался год или два. Возможно, интерфейс появится одновременно с 32Gb FC. Стандарты IEEE 802.3ba 40Gbps и 100Gbps Ethernet были ратифицированы в июне 2010. Новые продукты должны появиться через некоторое время.

Скорее всего, 40Gbps и 100Gbps FCoE, основанные на стандартах Ethernet 2010 года, будут использоваться первоначально для ISL-ядер, тем самым оставляя 10Gb FCoE в основном для конечных соединений. Ожидается, что будущие версии 100GFCoE кабелей и коннекторов будут доступны в конфигурациях 10х10 и затем 4х25.

InfiniBand

В настоящее время продукты, использующие 100Gbps Infiniband EDR (Enchanced Data Rate) уже доступны в продаже. EDR использует коннекторы 25/28G SFP+, так же как интерфейсы Ethernet и Fibre Channel.

InfiniBand High Data Rate (HDR), поддерживающий скорость в 2 раза больше, чем EDR, ожидается в 2017 или 2018 году. Хост-адаптеры HDR, возможно, будут требовать наличие PCIe 4.0 слотов.

Ethernet

В июле 2014 года 2 различные отраслевые группы — 20G/50G Ethernet Consortium и IEEE 802.3 25Gb/s Ethernet Study Group — объявили о начале новой работы над спецификацией Ethernet для использования преимуществ 25Gb PHY в однополосной конфигурации. В результате была получена спецификация однополосного соединения, похожего на существующую 10GbE технологию, но в 2.5 раза быстрее. Продукты, использующие эти технологии уже доступны. Также планируется разработка стандарта 50GbE, использующего 2 полосы 25GbE. Окончание спецификации планируется в 2018-2020 году.

В разработке находятся стандарты 2.5GbE и 5GbE, которые позволяют увеличивать пропускную способность сети без дополнительных затрат благодаря использованию кабелей категории 5e. Организация NBASE-T Alliance выпустила версию 1.1 спецификацию NBASE-T, которая описывает реализацию на физическом уровне. Technical Working Group работает над спецификацией для системного интерфейса PHY-MAC, магнитными и канальными характеристиками. Кроме того, работники 25 компаний участвуют в разработке стандартов IEEE 802.3bz 2.5/5GBASE-T. Продукты, поддерживающие 2.5GbE и 5GbE уже появляются на рынке.

SAS

12Gbps SAS

Спецификация SAS 3, включающая в себя 12Gbps SAS, была отправлена в INCITS в 4 квартале 2013 года. Продукты на 12Gbps SAS для конечных пользователей начали появляться во второй половине 2013, включая SSD, сетевые адаптеры (SAS HBA) и RAID-контроллеры. 12Gbps SAS позволяет использовать все преимущества шины PCIe 3.0.

24Gbps SAS

Спецификация интерфейса 24Gbps SAS сейчас в разработке. По прогнозам, первые компоненты, использующие 24Gbps SAS могут появиться в 2016 или 2017 году, первые продукты для пользователей будут доступны в 2018. 24Gbps SAS разрабатывается из расчета полной совместимости с 12Gbps и 6Gbps SAS. Возможно, будет использована другая схема кодирования.

Прототипы интерфейса 24Gbps SAS будут использовать технологию PCIe 3.x, однако, вероятно, что финальные продукты будут задействовать технологию PCIe 4.x.

SCSI Express

SCSI Express реализует хорошо известный протокол SCSI через интерфейс PCI Express, уменьшая задержку за счет использования PCIe. Он разрабатывается для соответствия улучшенной скорости SSD дисков. SCSI Express использует протоколы SCSI over PCIe (SOP) и PCIe Queueing Interface (PQI), создавая SOP-PQI протокол. Контроллеры соединяются с устройствами с помощью коннектора SFF-8639, который поддерживает множество протоколов и интерфейсов, таких как PCIe, SAS и SATA. SCSI Express поддерживает PCIe устройства, использующие до 4х полос.

SCSI Express впервые был предложен в 2011 году и принят в работу в качестве формального проекта в 2012, но не развивался до 2015 года. Пока не известно, когда первые продукты SCSI Express будут выпущены на рынок.

Возможности подключения SAS

Новые возможности подключения SAS позволяют передавать данные на большие расстояния, благодаря использованию активных медных патч-кордов и оптоволоконных кабелей. Коннектор Mini SAS HD (SFF-8644) может быть использован для 6Gbps SAS и 12Gbps SAS.

В будущем ожидаются такие возможности, как поддержка набора команд Zoned Block Commands (ZBC) и технологии записи для дисков увеличенного объема Shingled Magnetic Recording (SMR).

SATA Express

Спецификация SATA Express включается в SATA версии 3.2. SATA Express позволяет сосуществовать клиентским SATA и PCIe решениям. SATA Express позволяет увеличить скорость передачи до 2 полос PCIe (2GBps для PCIe 3.0 и 1GBps для PCIe 2.0) по сравнению с текущей технологией SATA (0.6GBps). Такая скорость подходит для SSD и SSHD, в то время как обыкновенные HDD-диски могут продолжать использовать существующий SATA интерфейс. Каждое устройство может использовать PCIe или SATA коннектор, но не оба одновременно. Отдельный сигнал, порождаемый устройством, говорит хосту, является устройство SATA или PCI Express. На середину 2015 года SATA Express поддерживается очень небольшим количеством материнских карт. Пока не понятно, будет ли SATA Express принят рынком, в ближайшее время не стоит ожидать появления большого числа продуктов.

Новые возможности SATA

Среди новых возможностей, которые запланированы на будущее, можно отметить такие опции корпоративного уровня, как удаленное отключение питания, улучшенное восстановление массива и оптимизации для устройств, работающих на NAND флеш-памяти. Также планируется поддержка технологии SMR (Shingled Magnetic Recording).

Thunderbolt

Thunderbolt 2 был представлен в конце 2013 года, сейчас выпускается множество устройств, использующих данный интерфейс. Скорость передачи данных Thunderbolt 2 составляет 20 Gbps.

Thunderbolt 3 (40 Gbps) был анонсирован в июне 2015 года. Используется кабель USB type-C, который поддерживает USB 3.1 (10 Gbps), Display Port (двойные 4k дисплеи), 4 полосы PCI Express 3.0 и предыдущие версии Thunderbolt. В дополнение, предоставляется 15 ватт для питания подключенных устройств и поддерживается питание USB для зарядки портативных компьютеров до 100 ватт. Активные медные и оптоволоконные кабели поддерживают скорость передачи данных до 40 Gbps. Менее дорогие пассивные медные кабели поддерживают скорость до 20 Gbps. Ожидается появление первых продуктов, использующих Thunderbolt 3, в конце 2015 года. Намного больше устройств станут доступны в 2016 году.

USB

USB 3.1

В июле 2013 года USB 3.0 Promoter Group объявила о создании спецификации USB 3.1. Новый интерфейс позволяет работать со скоростью 10 Gbps и полностью совместим с предыдущими версиями USB. USB 3.1 использует схему кодирования 128b/132b, в которой 4 бита используются для управления протоколом и передачи информации о кабеле. Устройства, использующие USB 3.1 с новым кабелем Type-C уже появились на рынке.

Питание USB

USB является интерфейсом с возможностью питания подключенных устройств и появляется все больше устройств, заряжающихся или работающих от USB. Спецификация USB Power Delivery (PD) версии 1.0 появилась в июле 2012 года. В ней было предложено увеличить мощность питания с 7.5 ватт до 100 ватт в зависимости от типа кабеля и коннектора. Устройства должны договариваться друг с другом для определения напряжения и силы тока для передачи электроэнергии, причем возможно передавать энергию в любом направлении. Устройства могут корректировать мощность питания во время передачи информации. Прототипы устройств с USB PD начали появляться в конце 2013 года. Спецификация USB PD включена в спецификацию USB 3.1.

Кабель USB Type-C

Спецификация нового кабеля и коннектора была завершена в августе 2014 года. Этот кабель имеет существенно отличающийся дизайн с уменьшенным размером коннектора, который легко может применяться в различных устройствах. В соответствии с новой спецификацией кабель и коннектор могут быть использованы в любом положении, независимо от ориентации коннектора и направления кабеля. Кабель имеет один и тот же тип коннектора с обеих сторон. Первые Type-C USB кабели представляют собой пассивные медные кабели длиной до 1 м, скоро ожидается появление активных медных и оптоволоконных кабелей.

Похожие статьи