Носители информации виды типы преимущества и недостатки. Компьютер-сервис

Носитель информации – физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг человека). Собственную память человека можно назвать оперативной памятью. Здесь слово “оперативный” является синонимом слова “быстрый”. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри нас.

Носитель информации - строго определённая часть конкретной информационной системы, служащая для промежуточного хранения или передачи информации.

Основа современных информационных технологий – это ЭВМ. Когда речь идет об ЭВМ, то можно говорить о носителях информации, как о внешних запоминающих устройствах (внешней памяти). Эти носители информации можно классифицировать по различным признакам, например, по типу исполнения, материалу, из которого изготовлен носитель и т.п. Вот один из вариантов классификация носителей информации:

Ленточные носители информации

Магнитная лента - носитель магнитной записи, представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя. Рабочие свойства магнитной ленты характеризуются её чувствительностью при записи и искажениями сигнала в процессе записи и воспроизведения. Наиболее широко применяется многослойная магнитная лента с рабочим слоем из игольчатых частиц магнитно-твёрдых порошков гамма-окиси железа (у-Fе2О3), двуокиси хрома (СrО2) и гамма-окиси железа, модифицированной кобальтом, ориентированных обычно в направлении намагничивания при записи.

Дисковые носители информации относятся к машинным носителям с прямым доступом. Понятие прямой доступ означает, что ПК может «обратиться» к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию .

Накопители на дисках наиболее разнообразны:

    Накопители на гибких магнитных дисках (НГМД), они же флоппи-диски, они же дискеты

    Накопители на жестких магнитных дисках (НЖМД), они же винчестеры (в народе просто «винты»)

    Накопители на оптических компакт-дисках:

    • CD-ROM (Compact Disk ROM)

В накопителях на гибких магнитных дисках (НГМД или дискетах) и накопителях на жестких магнитных дисках (НЖМД или винчестерах), в основу записи, хранения и считывания информации положен магнитный принцип, а в лазерных дисководах - оптический принцип.

Гибкие магнитные диски помещаются в пластмассовый корпус. Такой носитель информации называется дискетой. Дискета вставляется в дисковод, вращающий диск с постоянной угловой скоростью. Магнитная головка дисковода устанавливается на определенную концентрическую дорожку диска, на которую и записывается (или считывается) информация.

Информационная ёмкость дискеты невелика и составляет всего 1.44 Мбайт. Скорость записи и считывания информации также мала (около 50 Кбайт/с) из-за медленного вращения диска (360 об./мин).

Жесткие магнитные диски.

Жесткий диск (HDD - Hard Disk Drive) относится к несменным дисковым магнитным накопителям. Первый жесткий диск был разработан фирмой IBM в 1973 г. и имел емкость 16 Кбайт. Жесткие магнитные диски представляют собой несколько десятков дисков, размещенных на одной оси, заключенных в металлический корпус и вращающихся с высокой угловой скоростью. Скорость записи и считывания информации с жестких дисков достаточно велика (около 133 Мбайт/с) за счет быстрого вращения дисков (7200 об./мин).

В процессе работы компьютера случаются сбои. Вирусы, перебои энергоснабжения, программные ошибки - все это может послужить причиной повреждения информации, хранящейся на Вашем жестком диске. Повреждение информации далеко не всегда означает ее потерю, так что полезно знать о том, как она хранится на жестком диске, ибо тогда ее можно восстановить. Тогда, например, в случае повреждения вирусом загрузочной области, вовсе не обязательно форматировать весь диск (!), а, восстановив поврежденное место, продолжить нормальную работу с сохранением всех своих бесценных данных.

В жестких дисках используются достаточно хрупкие и миниатюрные элементы. Чтобы сохранить информацию и работоспособность жестких дисков, необходимо оберегать их от ударов и резких изменений пространственной ориентации в процессе работы.

Лазерные дисководы и диски.

В начале 80-х годов голландская фирма «Philips» объявила о совершенной ею революцией в области звуковоспроизведения. Ее инженеры придумали то, что сейчас пользуется огромной популярностью - Это лазерные диски и проигрыватели.

Лазерные дисководы используют оптический принцип чтения информации. На лазерных дисках CD (CD - Compact Disk, компакт диск) и DVD (DVD - Digital Video Disk, цифровой видеодиск) информация записана на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью. Лазерный луч падает на поверхность вращающегося диска, а интенсивность отраженного луча зависит от отражающей способности участка дорожки и приобретает значения 0 или 1. Для сохранности информации лазерные диски надо предохранять от механических повреждений (царапин), а также от загрязнения. На лазерных дисках хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна. Производятся такие диски путем штамповки. Существуют CD-R и DVD-R диски информация на которые может быть записана только один раз. На дисках CD-RW и DVD-RW информация может быть записана/перезаписана многократно. Диски разных видов можно отличить не только по маркировки, но и по цвету отражающей поверхности.

Устройства на основе flash-памяти.

Flash-память - это энергонезависимый тип памяти, позволяющий записывать и хранить данные в микросхемах. Устройства на основе flash-памяти не имеют в своём составе движущихся частей, что обеспечивает высокую сохранность данных при их использовании в мобильных устройствах.

Flash-память представляет собой микросхему, помещенную в миниатюрный корпус. Для записи или считывания информации накопители подключаются к компьютеру через USB-порт. Информационная емкость карт памяти достигает 1024 Мбайт.

Электронные носители информации

Технология записи информации на магнитные носители появилась сравнительно недавно - примерно в середине 20-го века (40-ые - 50-ые годы). Но уже несколько десятилетий спустя - в 60-ые - 70-ые годы - это технология стала очень распространённой во всём мире.

Магнитная лента состоит из полоски плотного вещества, на которую напыляется слой ферромагнетиков. Именно на этот слой "запоминается" информация. Процесс записи также похож на процесс записи на виниловые пластинки - при помощи магнитной индукционной катушки вместо специального аппарата на головку подаётся ток, который приводит в действие магнит. Запись звука на плёнку происходит благодаря действию электромагнита на плёнку. Магнитное поле магнита меняется в такт со звуковыми колебаниями, и благодаря этому маленькие магнитные частички (домены) начинают менять своё местоположение на поверхности плёнки в определённом порядке, в зависимости от воздействия на них магнитного поля, создаваемого электромагнитом. А при воспроизведении записи наблюдается процесс обратный записи: намагниченная лента возбуждает в магнитной головке электрические сигналы, которые после усиления поступают дальше в динамик.

Компамкт-кассемта (аудиокассемта или просто кассемта) -- носитель информации на магнитной ленте, во второй половине XX века -- распространённый медианоситель для звукозаписи. Применялся для записи цифровой и аудиоинформации. Впервые компакт-кассета была представлена в 1964 году компанией Philips. По причине своей относительной дешевизны долгое время (с начала 1970-х по 1990-е годы) компакт-кассета была самым популярным записываемым аудионосителем, однако, начиная с 1990-х годов,

была вытеснена компакт-дисками.

Сейчас в мире присутствует множество различных типов магнитных носителей: дискеты для компьютеров, аудио- и видеокассеты, бобинные ленты и.т.д. Но постепенно открываются новые законы физики, и вместе с ними - новые возможности записи информации. Всего пару десятков лет назад появилось множество носителей информации, базирующихся на новой технологии - считывания информации при помощи линз и лазерного луча.

Развитие материальных носителей документированной информации в целом идёт по пути непрерывного поиска объектов с высокой долговечностью, большой информационной ёмкостью при минимальных физических размерах носителя. Начиная с 1980-х годов, всё более широкое распространение получают оптические (лазерные) диски. Это пластиковые или алюминиевые диски, предназначенные для записи и воспроизведения информации при помощи лазерного луча.

По технологии применения оптические, магнитооптические и цифровые компакт-диски делятся на 3 основных класса:

1. Диски, допускающие однократную запись и многократное воспроизведение сигналов без возможности их стирания (CD-R; CD-WORM - Write-Once, Read-Many - один раз записал, много раз считал). Используются в электронных архивах и банках данных, во внешних накопителях ЭВМ.

2. Реверсивные оптические диски, позволяющие многократно записывать, воспроизводить и стирать сигналы (CD-RW, CD-E). Это наиболее универсальные диски, способные заменить магнитные носители практически во всех областях применения.

3. Цифровые универсальные видеодиски DVD (Digital Versatile Disk) типа DVD-ROM, DVD-RAM, DVD-R с большой ёмкостью (до 17 Гбайт).

Название оптических дисков определяется методом записи и считывания информации. Информация на дорожке создается мощным лазерным лучом, выжигающим на зеркальной поверхности диска впадины, и представляет собой чередование впадин и отражающих участков. При считывании информации зеркальные островки отражают свет лазерного луча и воспринимаются как единица (1), впадины не отражают луч и соответственно воспринимаются как ноль (0). Этот принцип позволяет достичь высокой плотности записи информации, а следовательно и большой емкости при минимальных размерах. Компакт-диск является идеальным средством хранения информации - дешев до смешного, практически не подвержен каким-либо влияниям среды, информация записанная на нем не исказится и не сотрется, пока диск не будет уничтожен физически, имеет ёмкость 700 Мбайт.

Магнитооптический диск -- носитель информации, сочетающий свойства оптических и магнитных накопителей. Диск изготовлен с использованием ферромагнетиков. Магнитооптические диски при всех своих достоинствах имеют серьёзные недостатки: относительно низкую скорость записи, вызванную необходимостью перед записью стирать содержимое диска, а после записи--проверкой на чтение; высокое энергопотребление - для разогрева поверхности требуются лазеры значительной мощности, а следовательно и высокого энергопотребления. Это затрудняет использование пишущих МО приводов в мобильных устройствах.

DVD (ди-ви-дим, англ. Digital Versatile Disc -- цифровой многоцелевой диск) -- носитель информации в виде диска, внешне схожий с компакт-диском, однако имеющий возможность хранить бомльший объём информации за счёт использования лазера с меньшей длиной волны, чем для обычных компакт дисков. Первые диски и проигрыватели DVD появились в ноябре 1996 в Японии и в марте 1997 в США. Они предназначались для записи и хранения видеоизображений. Интересно, что первые DVD-"болванки" объёмом 3,95 Гб стоили тогда 50$ за штуку. В настоящее время существует шесть разновидностей подобных дисков ёмкостью от 4,7 до 17,1 Гб. Они используются для записи и хранения любой информации: видео, аудио, данных.

Работа с информацией в наше время не мыслима без компьютера, так как он изначально создавался как средство обработки информации и только теперь он стал выполнять множество других функций: хранение, преобразование, создание и обмен информацией. Но прежде чем принять привычную сейчас форму компьютер претерпел три революции.

Первая компьютерная революция свершилась в конце

50-х годов; ее суть можно описать двумя словами: компьютеры появились.

Изобретены они были не менее чем за десять лет до этого, но именно в то время начали выпускаться серийные машины, эти машины перестали быть объектом исследований для ученых и диковинкой для всех остальных. Через полтора десятилетия после этого ни одна крупная организация не могла себе позволить обходиться без вычислительного центра. Если тогда заходила речь о компьютере, сразу же представлялись заполненные стойками машинные залы, в которых напряженно думают люди в белых халатах. И тут свершилась вторая революция. Практически одновременно несколько фирм обнаружили, что развитие техники достигло такого уровня, когда вокруг компьютера не обязательно воздвигать вычислительный центр, а сам он стал небольшим. Это были первые мини-ЭВМ. Но прошло еще десять с небольшим лет, и наступила третья революция - в конце 70-х возникли персональные компьютеры. За короткое время, пройдя путь от настольного калькулятора до полноценной небольшой машины, ПК заняли свои места на рабочих столах индивидуальных пользователей.

В тот самый момент, когда первый компьютер впервые обработал несколько байт данных моментально встал вопрос: где и как хранить полученные результаты? Как сохранять результаты вычислений, текстовые и графические образы, произвольные наборы данных?

Прежде всего, должно быть устройство с помощью которого компьютер будет запоминать информацию, затем требуется носитель информации, на котором ее можно будет переносить с места на место, причем другой компьютер должен также легко прочитать эту информацию. Рассмотрим некоторые из этих устройств.

1. Устройство чтения перфокарт: предназначено для хранения программ и наборов данных с помощью перфокарт - картонных карточек с пробитыми в определенной последовательности отверстиями. Перфокарты были изобретены задолго до появления компьютера, с их помощью на ткацких станках получали очень сложные и красивые ткани, потому что они управляли работой механизма. Изменишь набор перфокарт и рисунок ткани будет совсем другим - это зависит от расположения отверстий на карте. Применительно к компьютерам был использован тот же принцип, только вместо рисунка ткани отверстия задавали команды компьютеру или наборы данных. Такой способ хранения информации не лишен недостатков: - очень низкая скорость доступа к информации; - большой объем перфокарт для хранения небольшого количества информации; - низкая надежность хранения информации; - к тому же от перфоратора постоянно летели маленькие кружочки картона, которые попадали на руки, в карманы, застревали в волосах и уборщицы были страшно недовольны. Перфокартами люди были вынуждены пользоваться не потому что этот способ как-то особенно нравился им, или он имел какие-то неоспоримые достоинства, вовсе нет, он вообще не имел достоинств, просто в то время ничего другого еще не было, выбирать было не из чего, приходилось выкручиваться.

2. Накопитель на магнитной ленте (стриммер): основан на использовании устройства магнитофонного типа, и кассет с магнитной пленкой. Этот способ накопления информации известен давно и успешно применяется и сегодня. Это объясняется тем, что на небольшой кассете помещается довольно большой объем информации, информация может храниться продолжительное время и скорость доступа к ней гораздо выше, чем у устройства чтения перфокарт. С другой стороны стриммер пригоден только для накопления, хранения больших массивов информации, резервирования данных. Обрабатывать информацию с помощью стриммера практически невозможно: стример - устройство последовательного доступа к данным: чтобы получить 5-й файл мы должны промотать четыре. А если нужен 7529-й?

3. Накопитель на гибких магнитных дисках (НГМД - дисковод). Это устройство использует в качестве носителя информации гибкие магнитные диски - дискеты, которые могут быть 5-ти или 3-х дюймовыми. Дискета - это магнитный диск вроде пластинки, помещенный в картонный конверт. В зависимости от размера дискеты изменяется ее емкость в байтах. Если на стандартную дискету размером 5"25 дюйма помещается до 720 Кбайт информации, то на дискету 3"5 дюйма уже 1,44 Мбайта. Дискеты универсальны, подходят на любой компьютер того же класса оснащенный дисководом, могут служить для хранения, накопления, распространения и обработки информации. Дисковод - устройство параллельного доступа, поэтому все файлы одинаково легко доступны. К недостаткам относятся маленькая емкость, что делает практически невозможным долгосрочное хранение больших объемов информации, и не очень высокая надежность самих дискет.

4. Накопитель на жестком магнитном диске (НЖМД - винчестер): является логическим продолжением развития технологии магнитного хранения информации. Имеют очень важные достоинства: - чрезвычайно большая емкость; - простота и надежность использования; - возможность обращаться к тысячам файлов одновременно; - высокая скорость доступа к данным.

5. Уже рассмотренные нами CD и DVD-диски.

Но так как потоки информации только увеличиваются то для ее создания, обработки, хранения и передачи необходимо разрабатывать все новые и новые средства и приспособления.

Мы уже рассматривали выше хранение данных на CD и DVD-дисках. Несмотря на их удобство, в связи с необходимостью использования максимально большого объема информации, уже начинается процесс их вытеснения. В ближайшие годы в таких устройствах персональной вычислительной техники, как компьютер, флэш-память будет грозным соперником жёстких дисков.

6. Флеш-память (англ. Flash-Memory) -- разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.

Благодаря своей компактности, дешевизне и низкой потребности в электроэнергии флеш-память уже широко используется в портативных устройствах, работающих на батарейках и аккумуляторах -- цифровых фотокамерах и видеокамерах, цифровых диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах. Кроме того, она используется для хранения встроенного программного обеспечения в различных периферийных устройствах (маршрутизаторах, мини-АТС, коммуникаторах, принтерах, сканерах). Не содержит подвижных частей, так что, в отличие от жёстких дисков, более надёжна и компактна.

Основное слабое место флеш-памяти -- количество циклов перезаписи. Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Несмотря на то, что такое ограничение есть, 10 тысяч циклов перезаписи -- это намного больше, чем способна выдержать дискета или компакт-диск. Флеш-память наиболее известна применением в USB флеш-носителях (англ. USB flash drive). Благодаря большой скорости, объёму и компактным размерам USB флеш-носители уже вытесняют с рынка компакт-диски.

Человеческая цивилизация за время своего существования нашла множество способов фиксировать информацию. С каждым годом ее объемы растут в По этой причине меняются и носители. Именно об этой эволюции и пойдет речь ниже.

Пережитки прошлого

Древнейшими памятниками человеческой деятельности можно считать наскальные рисунки, на которых изображались животные, бывшие целями охоты. Первые материальные носители информации были природного происхождения.

Настоящим прорывом можно считать появление письменности у шумеров, живших в современном Ираке и использовавших не камень, а глиняные таблички, которые обжигались после письма. Таким образом, их сохранность значительно увеличивалась. Однако скорость, с которой фиксировались знания, была крайне малой.

Также можно отметить египетский папирус, воск, шкуры, на которых впервые начали писать в Персии. В Азии использовался бамбук и шелк. Древние индейцы имели уникальную систему узелкового письма. На Руси в ходу была береста, которую и сегодня находят археологи.

Бумага

Бумажные носители информации совершили переворот, масштаб которого сложно переоценить. Несмотря на то что первые аналоги целлюлозного материала были получены китайцами еще во II веке, общедоступным он стал только в XIX столетии.

С бумагой связано и появление книг. В 1450-ых немецкий изобретатель изобрел ручной типографский станок, с помощью которого издал два экземпляра Библии. Эти события послужили точкой отсчета для новой эпохи массового книгопечатания. Именно благодаря ему знание перестало быть уделом тонкой прослойки человечества, а стало доступным для каждого желающего.

Сегодняшняя бумага бывает газетной, офсетной, мелованной и т. д. Ее выбор зависит от конкретных целей. И хотя белое полотно пользуется спросом как никогда, свое инновационное положение оно уже уступило.

Перфокарты и перфоленты

Следующий толчок в своем развитии информационные носители получили в начале XIX века, когда появились первые картонные перфокарты. В определенных местах ставились отверстия, с помощью которых считывались данные. Первоначально технология использовалась для управления

Интерес к новинке возрос после того, как в США ее стали использовать для более удобного и быстрого подсчета результатов переписи населения страны в 1890 году. Производством карт занималась компания IBM в будущем ставшая пионером компьютерных технологий. Расцвет технологии пришелся на середину XX века. Именно тогда стала распространяться систематизировавшая и обобщившая самые разные данные.

Первые машинные носители информации представляли собой также и перфоленты. Производились они из бумаги и использовались в телеграфах. Благодаря своему формату ленты позволяли легко производить ввод и вывод. Это сделало их незаменимыми вплоть до появления магнитных конкурентов.

Магнитная лента

Как бы не были хороши прежние внешние носители информации, они не могли воспроизводить то, что фиксировали. Данная проблема была решена с появлением магнитной ленты. Она представляла собой гибкую основу, покрытую несколькими слоями, на которых и записывается информация. В качестве рабочей среды выступали различные химические элементы: железо, кобальт, хром.

Магнитные носители информации сделали рывок в звукозаписи. Именно эта инновация позволила новой технологии быстро прижиться в Германии в 30-ые годы. Прежние устройства (фонографы, граммофоны, патефоны) отличались механическим характером и были не практичны. Большое распространение получили магнитофоны катушечного и кассетного типа.

В 50-ые годы были предприняты попытки использовать данные разработки как компьютерные носители информации. Магнитные ленты внедрялись в персональные компьютеры в 80-ые годы. Их популярность в целом объяснялась такими преимуществами. как большая емкость, сравнительная дешевизна производства и низкое энергопотребление.

Недостатком лент можно считать срок годности. С течением времени они размагничиваются. В лучшем случае данные сохраняются на 40 - 50 лет. Тем не менее, это не помешало формату стать популярным во всем мире. Отдельно стоит упомянуть о видеокассетах, расцвет которых пришелся на окончание XX века. Магнитные носители информации стали основой теле и радиовещания нового типа.

Жесткие диски

Тем временем развитие отрасли продолжалось. Информационные носители большого объема требовали модернизации. Первые жесткие диски или винчестеры были созданы в 1956 году силами IBM. Однако они были непрактичны. Их размер превышал ящик, а вес почти равнялся тонне. При этом объем хранимых данных не превышал 3,5 мегабайт. Однако в дальнейшем стандарт развивался, и к 1995 году была преодолена планка в 10 гигабайт. А еще через 10 лет в продаже появились модели Hitachi объемом в 500 гигабайт.

В отличие от гибких аналогов жесткие диски содержали алюминиевые пластины. Данные воспроизводятся посредством считывающих головок. Они не прикасаются к диску, а работают на расстоянии нескольких нанометров от него. Так или иначе принцип работы винчестеров похож на характеристики магнитофонов. Основная разница заключается в физических материалах, используемых для производства устройств. Жесткие диски стали основой персональных компьютеров. Со временем подобные модели стали выпускаться совмещенно вместе с накопителями, приводами и блоком электроники.

Помимо основной памяти, необходимой для содержания данных, жесткие диски обладают определенным буфером, необходимым для сглаживания скоростей чтения с устройства.

3,5-дюймовые дискеты

Одновременно с этим шло движение вперед в сфере малых форматов. Знание магнитных свойств пригодилось при создании дискет, данные с которых считывались с помощью специального дисковода. Первый подобный аналог был представлен IBM в 1971 году. Плотность записи на такие информационные носители составляла до 3 мегабайт. Основой дискеты был гибкий диск, покрывавшийся специальным слоем из ферромагнетиков.

Главное достижение - уменьшение физических размеров носителя - сделало данный формат главным на рынке на протяжении четверти века. Только в США в 80-е ежегодно производилось до 300 миллионов новых дискет.

Несмотря на массу преимуществ, новинка имела и недостатки - чувствительность к магнитному воздействию и малая емкость по сравнению с все увеличивающимися потребностями рядового пользователя компьютера.

Компакт-диски

Первым поколением оптических носителей стали компакт-диски. Их прообразом были еще грампластинки. Однако новые внешние носители информации производились из поликарбоната. Диск из этого вещества получил тончайшее покрытие из металла (золото, серебро, алюминий). Для защиты данных он покрывался специальным лаком.

Пресловутый CD был разработан силами Sony и запущен в массовое производство в 1982 году. В первую очередь формат получил бешеную популярность за счет удобной звукозаписи. Объем в несколько сот мегабайт позволил вытеснить сначала виниловые проигрыватели, а после и магнитофоны. Если первые уступали в объеме информации, то вторые отличались худшим качеством звука. Кроме того новый формат отправил в прошлое дискеты, которые не только вмещали меньше данных, но и были не слишком надежны.

Компакт-диски стали причиной революции в сфере персональных компьютеров. Со временем все гиганты отрасли (например, Apple) перешли на производство ПК вместе с дисководами, поддерживающими формат CD.

DVD и Blue-Ray

Оптические информационные носители первого поколения продержались на Олимпе хранения данных недолго. В 1996 году появился DVD, который по объему был больше своего предка в шесть раз. Новый стандарт позволил записывать видео большей длительности. Под него быстро подстроилась киноиндустрия. Фильмы на DVD стали общедоступными по всему миру. Принцип работы и кодирования информации по сравнению с компакт-дисками остался тот же.

Наконец в 2006 году был запущен новый, на сегодняшний день последний формат оптического носителя информации. Объем стал исчисляться сотнями гигабайт. Благодаря этому обеспечивается лучшее качество записи звука и видео.

Войны форматов

На протяжении последних лет участились конфликты между несовместимыми форматами хранения информации. Внешние носители разных производителей на очередном витке развития отрасли конкурируют между собой за монополию в формате.

Одним из первых подобных примеров можно назвать конфликт между фонографом Эдисона и граммофоном Берлинера в 10-е годы XX века. В дальнейшем подобные споры возникали между компакт-кассетами и 8-дорожечными аудиокассетами; VHS и Betamax; MP3 и AAC и т. д. Последней в этом ряду стала «война» между HD DVD и Blue-Ray, которая окончилась победой последнего.

Флеш-накопители

Примеры носителей информации не могут обойтись без упоминания USB-флеш-накопителей. Первый Universal Serial Bus был разработан в середине 90-х годов. На сегодняшний день существует уже третье поколение этого Шина позволяет присоединить к персональному компьютеру периферийное устройство. И хотя эта проблема существовала задолго до появления USB, решена она была только в последнее десятилетие.

Сегодня каждый компьютер обладает узнаваемым гнездом, с помощью которого к компьютеру можно подключить мобильный телефон, плеер, планшет и т. д. Быстрая передача данных любого формата сделало USB действительно универсальным инструментом.

Наибольшую популярность на основе данного интерфейса получили флеш-накопители или в просторечии флешки. Такое устройство обладает USB-разъемом, микроконтроллером, микросхемой, и светодиодом. Все эти детали сделали возможным держать в одном кармане гигабайты информации. По своему уступает даже дискетами, обладавшим объемом в 3 мегабайта. В разы увеличился объем устройств, где осуществляется хранение информации. Носители информации, напротив, имеют тенденцию к физическому уменьшению.

Универсальность разъема позволяет накопителям работать не только с персональными компьютерами, но и с телевизорами, DVD-проигрывателями и другими устройствами, обладающими технологией USB. Огромным преимуществом по сравнению с оптическими аналогами стала меньшая восприимчивость к внешнему воздействию. Флешке не страшны царапины и пыль, бывшие смертельной угрозой для CD.

Виртуальная реальность

В последние годы компьютерные носители информации уступают позиции виртуальной альтернативе. Так как сегодня легко подключить ПК к Глобально Сети, информация хранится на общих серверах. Удобства неоспоримы. Теперь чтобы получить доступ к своим файлам, пользователю вовсе не нужен физический носитель. Для взаимодействия с данными на расстоянии достаточно находиться в зоне доступа беспроводного Wi-Fi соединения и т. д.

Кроме того, данное явление помогает избежать недоразумений с выходом из строя физических накопителей, уязвимых к повреждениям. Удаленные сервера, связь с которыми поддерживается сигналом, не пострадают, а в случае непредвиденных ситуаций там существуют резервные хранилища данных.

Вывод

На протяжении всей истории - от наскальных рисунков до виртуальных бит - человек стремился сделать информационные носители объемнее, надежнее и доступнее. Это стремление привело к тому, что сегодня мы живем в эпоху, которую не без основания называют веком информационного общества. Прогресс дошел до того, что теперь люди в своей повседневной жизни просто захлебываются в потоке данных. Возможно информационные носители, виды которых все множатся, кардинально изменятся, согласно требованиям современенного человека.

Введение стр. 3

Современные материальные носители документированной информации, их классификация и характеристика

I. Современные материальные носители стр. 5

II. Классификация современных материальных носителей стр. 6

III. Характеристика современных материальных носителей

1. Магнитные носители стр. 9

2. Пластиковые карты стр. 12

3. Оптические носители стр. 13

4. Носители на базе флэш-памяти стр. 17

5. Носители объёмного изображения стр. 19

Заключение стр. 23

Используемая литература стр. 26

Введение

Понятие документ является центральным, фундаментальным в понятийной системе документоведения. Это понятие широко используется во всех сферах общественной деятельности. Почти в каждой отрасли знания имеется одна или несколько версий для его понимания в соответствии со спецификой тех объектов, которым придаётся статус документа.

Понятие документ выступает как родовое для видовых: опубликованный, не опубликованный, кино-, фоно-, фотодокумент и т.п. с этой точки зрения разновидностью документа являются: буклет, чертёж, карта, фильм, магнитная лента, магнитный и оптический диск.

Вспомним ещё раз определение документа: информация, закреплённая на материальном носителе в стабильной знаковой форме созданным человеком способом для её передачи в пространстве и времени. Из определения следует, что документ не существует в готовом виде, его нужно создать, т.е. зафиксировать в стабильной форме. Процесс закрепления (фиксации) информации на материальном носителе называется документированием.

В процессе документирования происходит преобразование социальной информации из одной знаковой формы в другую, т.е. кодирование информации, без которого невозможна реализация основных функций документа – функций закрепления и передачи информации в пространстве и времени.

Информатизация общества, бурное развитие микрографии, компьютерной техники и проникновение её во все сферы деятельности определили появление документов на новейших носителях информации. Наличие обобщающего понятия документ не исключает возможности существования более частных, узкоспециализированных его трактовок применительно к разным сферам общественной деятельности и научным дисциплинам: источниковедению, делопроизводству, дипломатике, информатике, юридической науке.

Среди этих новейших носителей информации выделяется группа «Современных носителей документированной информации», которые используются в настоящее время, приходя на смену старым носителям всё большей популярностью. Например, кажется не так давно очень распространённый носитель информации – гибкий магнитный диск или дискета практически не используется, на смену ему пришли оптические диски и носители на базе флэш-памяти, тоже явление происходит и в аудио- и видеотехнике на смену аудио- и видеокассет пришли оптические диски.

Данная тема «Современные материальные носители информации, их классификация и характеристика» касается и документно-коммуникационной деятельности, так как рассматривает средства, которые упрощают обмен информацией.

Я считаю, что выбранная мной тема курсовой работы актуальна в настоящее время, так как знание и умение пользоваться современными носителями информации позволяет идти в ногу со временем и ускорять процесс создания и передачи информации в пространстве и времени, а также улучшить условия хранения документированной информации.

Современные материальные носители документированной информации, их классификация и характеристика

I. Современные материальные носители

Информатизация общества, бурное развитие компьютерной техники и проникновение её во все сферы человеческой деятельности определили появление документов на современных, нетрадиционных, т.е. не бумажных носителях информации.

Понятие «современный» и «нетрадиционный» документ во многом условны и служат для названия группы документов, которые в отличие от традиционных, т.е. бумажных, как правило, требуют для воспроизведения информации современных технических средств. Все это связано с появлением электронно-вычислительных машин – компьютеров, представляющих собой комплексы технических средств, предназначенных для автоматического преобразования информации, используются для записи и воспроизведения как текстовой, так и графической, и аудио-, и видеоинформации.

Появление современных носителей связано и с тем, что за полвека своего существования сменилось уже пять поколений компьютеров, причём от поколения к поколению на порядок и более возрастали их производительность и ёмкость запоминающих устройств. А также появлялись новые, более совершенные периферийные устройства – принтеры, сканеры, копиры, а в настоящее время всё чаще используются многофункциональные устройства (МФУ), которые облегчают работу офисных служащих, позволяющие получать твёрдую копию документа не только из памяти компьютера, но с современного носителя.

С моей точки зрения к современным носителя документированной информации относятся: магнитные карты, магнитные жёсткие диски, оптические диски, голограммы, носители на базе флэш-памяти. Может быть это не правильное суждение, но данные носители активно используются в настоящее время. Они пришли на смену хорошо всем известным аудио-, видеокассетам, микроформам, гибким дискам или дискетам. Их можно назвать устаревшими. Тоже самое произойдёт и с современными носителями информации, потому что современными они являются в данный момент. Лет через десять на смену современным носителям придут ещё более современные носители, так как человечество не стоит на одном месте, а прогрессирует и развивается бурными темпами. И через лет десять рассматриваемые в данной работе современные материальные носители документированной информации назовут устаревшими.

II . Классификация современных материальных носителей

Документ представляет собой двуединство информации и материального носителя. Поэтому важными признаками («сильными отличиями»), которые могут быть положены в основу классификации, являются особенности строения, формы материала, на котором фиксируется информация. В частности, по этому критерию всё многообразие документов содержащихся на современных материальных носителях можно представить в виде класса:

· документы на искусственной материальной основе (на полимерных материалах).

В свою очередь, документы на искусственной материальной основе можно отнести к многослойным, в которых имеется как минимум два слоя – специальный рабочий слой и подложка (магнитные носители, оптические диски и др.). При этом основа подложка может быть всякой разной – бумажной, металлической, стеклянной, керамической, деревянной, тканью, плёночной или пластиночной пластмассовой. На основу наносится от одного до нескольких (иногда до 6-8) слоёв. В результате материальный носитель предстаёт порой в виде сложной полимерной системы.

Существуют также энергетические носители.

По форме материального носителя информации документы могут быть:

· карточными (пластиковые карты);

· дисковыми (диск, компакт-диск, CD-ROM, видеодиск). Местом размещения информации являются концентрические дорожки – оптические диски.

В зависимости от возможности транспортировки материальных носителей документы можно разделить на:

· стационарные (жёсткий магнитный диск в компьютере);

· портативные (оптические диски, носители на базе флэш-памяти).

В зависимости от способа документирования документы на современных носителях информации можно разделить на:

· магнитные (магнитные жёсткие диски, магнитные карты);

· оптические (лазерные) – документы, содержащие информацию, записанную с помощью лазерно-оптической головки (оптические, лазерные диски);

· голографические – созданные с использованием лазерного луча и фоторегистрирующего слоя материального носителя (голограммы).

· документы на машинных носителях – электронные документы, созданные с использованием носителей и способов записи, обеспечивающих обработку его информации электронно-вычислительной машиной .

Документы на современных материальных носителях информации, как правило, не поддаются непосредственному восприятию, считыванию. Информация хранится на машинных носителях, а часть документов создаётся и используется непосредственно в машиночитаемой форме.

По предназначенности для восприятия рассматриваемую документы относятся к машиночитаемым. Это документы, предназначенные для автоматического воспроизведения находящейся в них информации. Содержание таких документов полностью или частично выражено знаками (матричное расположение знаков, цифр и т.п.), приспособленным для автоматического считывания. Информация записывается на магнитных лентах, картах, дисках и подобных носителях.

Документы на современных носителя информации относятся к классу технически-кодированных, содержащих запись, доступную для воспроизведения только с помощью технических средств, в том числе звуковоспроизводящей, видеовоспроизводящей аппаратуры или компьютера.

По характеру связи документов с технологическими процессами в автоматизированных системах различают:

· машинно-ориентированный документ, предназначенный для записи считывания части содержащейся в нём информации средствами вычислительной техники (заполненные специальные формы бланков, анкет и т. п.);

· машиночитаемый документ, пригодный для автоматического считывания содержащейся в ней информации с помощью сканера (текстовые, графические);

· документ на машиночитаемом носителе, созданный средствами вычислительной техники, записанный на машиночитаемый носитель: жёсткий магнитный диск, оптический диск, носитель на базе флэш-памяти – и оформленный в установленном порядке;

· документ-машинограмма (распечатка), созданный на бумажном носителе с помощью средств вычислительной техники и оформленный в установленном порядке;

· документ на экране дисплея, созданный средствами вычислительной техники, отражённый на экране дисплея (монитора) и оформленный в установленном порядке;

· электронный документ, содержащий совокупность информации в памяти вычислительной машины, предназначенный для восприятия человеком с помощью соответствующих программных и аппаратных средств.

III . Характеристика современных материальных носителей

1. Магнитные носители

Из всех носителей магнитных документов хочу выделить магнитный диск – носитель информации в виде диска с ферромагнитным покрытием для записи. Магнитные диски делятся на жёсткие (винчестеры) и гибкие (дискеты).

Из этой группы в своей работе я буду рассматривать только винчестеры, так как дискеты, их я называю устаревшими носителями информации, практически вытеснены оптическими дисками и носителями на базе флэш-памяти.

Жёсткие диски

Жёсткие магнитные диски, называемые винчестерами, предназначены для постоянного хранения информации, используемой при работе с персональным компьютером и устанавливаются внутри него.

Винчестеры значительно превосходят гибкие диски. Они имеют лучшие характеристики ёмкости, надёжности и скорости доступа к информации. Поэтому их применение обеспечивает скоростные характеристики диалога пользователя и реализуемых программ, расширяет системные возможности по использованию баз данных, организации многозадачного режима работы, обеспечивает эффективную поддержку механизма виртуальной памяти. Однако стоимость винчестеров намного выше стоимости гибких дисков.

Винчестер смонтирован на оси-шпинделе, приводимой в движение специальным двигателем. Он содержит от одного до десяти дисков (platters). Скорость вращения двигателя для обычных моделей может составлять 3600, 4500, 5400, 7200, 10000 или даже 12000 об/мин. Сами диски представляют собой обработанные с высокой точностью керамические или алюминиевые пластины, на которые нанесен магнитный слой.

Важнейшей частью винчестера являются головки чтения и записи (read-write head). Как правило, они находятся на специальном позиционере (head actuator). Для перемещения позиционера используются преимущественно линейные двигатели (типа voice coil - «звуковая катушка»). В винчестерах применяются несколько типов головок: монолитные, композитные, тонкопленочные, магниторезистивные (MR, Magneto-Resistive), а также головки с усиленным магниторезистивным эффектом (GMR, Giant Magneto-Resistive). Магниторезистивная головка, разработанная IBM в начале 1990-х годов, представляет собой комбинацию из двух головок: тонкопленочной для записи и магниторезистивной для чтения. Подобные головки позволяют почти в полтора раза увеличить плотность записи. Еще больше позволяют повысить плотность записи GMR-головки.

Внутри любого винчестера обязательно находится электронная плата, которая расшифровывает команды контроллера жесткого диска, стабилизирует скорость вращения двигателя, генерирует сигналы для головок записи и усиливает их от головок чтения.

Различают два вида жёстких магнитных дисков.

Жёсткий диск (hard disk) – встроенный накопитель (дисковод) на жёстком магнитном диске пакет закреплённых один над другим магнитных дисков, извлечение которых в процессе эксплуатации электронных вычислительных машинах является невозможным.

Съёмный жёсткий диск (removable hard disk) – пакет магнитных дисков, заключённых в защитную оболочку, которые в процессе эксплуатации электронных вычислительных машинах могут выниматься из дисковода на сменном жёстком диске и заменяться другим. Использование этих дисков обеспечивает практически неограниченный объём внешней памяти ЭВМ .

В ходе выполнения процедуры так называемого низкоуровневого форматирования (low-level formatting) на жесткий диск записывается информация, которая определяет разметку винчестера на цилиндры и секторы. Структура формата включает в себя различную служебную информацию: байты синхронизации, идентификационные заголовки, байты контроля четности. В современных винчестерах такая информация записывается однократно при изготовлении винчестера. Повреждение этой информации при самостоятельном низкоуровневом форматировании чревато полной неработоспособностью диска и необходимостью восстановления этой информации в заводских условиях.

Емкость винчестера измеряется в мегабайтах. К концу 1990-х годов средняя емкость жестких дисков для настольных систем достигла 15 гигабайт, а в серверах и рабочих станциях с интерфейсом SCSI применяются винчестеры емкостью свыше 50 гигабайт. В большинстве современных персональных компьютеров применяются жесткие диски емкостью 40 гигабайт.

Одной из основных характеристик жесткого диска является среднее время, в течение которого винчестер находит нужную информацию. Это время обычно представляет собой сумму времени, необходимого для позиционирования головок на нужную дорожку и ожидания требуемого сектора. Современные винчестеры обеспечивают доступ к информации за 8-10 мс.

Другой характеристикой винчестера является скорость чтения и записи, но она зависит не только от самого диска, но и его контроллера, шины, быстродействия процессора. У стандартных современных жестких дисков эта скорость составляет 15-17 Мбайт/с.

2. Пластиковые карты

Пластиковые карты представляют собой устройство для магнитного способа хранения информации и управления данными.

Пластиковые карты состоят из трёх слоёв6 полиэфирной основы, на которую наносится тонкий рабочий слой, и защитного слоя. В качестве основы обычно используется поливинилхлорид, который легко обрабатывается, устойчив к температурным, химическим и механическим воздействиям. Однако в целом ряде случаев основой для магнитных карт служит псевдопластик – плотная бумага или картон с двусторонним ламинированием.

Рабочий слой (ферромагнитный порошок) наносится на пластик методом горячего тиснения в виде отдельных узких полосок. Магнитные полоски по своим физическим свойствам и сфере применения делятся на два типа: высокоэрцетивные и низкоэрцетивные . Высокоэрцетивные полоски имеют чёрный цвет. Они устойчивы к воздействию магнитных полей. Для их записи нужна более высокая энергия. Используются в качестве кредитных карт, водительских удостоверений, т. е. в тех случаях, когда требуется повышенная износостойкость и защищённость. Низкоэрцетивные магнитные полосы имеют коричневый цвет. Они менее защищены, но зато проще и быстрее записываются. Используются на картах ограниченного срока действия, в частности, для проезда в метрополитене.

Следует заметить, что, кроме магнитного, существуют и другие способы записи информации на пластиковую карту: графическая запись, эмбоссирование (механическое выдавливание), штрих-кодирование, лазерная запись. В частности, в последнее время в пластиковых картах вместо магнитных полосок всё более широко стали применяться электронные чипы. Такие карты, в отличие от простых магнитных, стали называть интеллектуальными или смарт-картами (от англ. smart – умный). Встроенный в них микропроцессор позволяет хранить значительный объём информации, даёт возможность производить необходимые расчёты в системе банковских и торговых платежей, превращая таким образом, пластиковые карты в многофункциональные носители информации.

По способу доступа к микропроцессору (интерфейсу) смарт-карты могут быть:

· с контактным интерфейсом (т. е. при совершении операции карта вставляется в электронный терминал;

· с дуальным интерфейсом (могут действовать как контактно, так и бесконтактно, т. е. обмен данными между картой и внешними устройствами может осуществляться через радиоканал).

Защитный слой магнитных пластиковых карт состоит из прозрачной полиэфирной плёнки. Он призван предохранять рабочий слой от износа. Иногда используются покрытия, предохраняющие от подделки и копирования. Защитный слой обеспечивает до двух десятков тысяч циклов записи и чтения.

Размеры пластиковых карт стандартизированы. В соответствии с международным стандартом ISO-7810 их длина равна 85,595 мм, ширина – 53,975 мм, толщина – 3,18 мм.

Сфера применения пластиковых и псевдопластиковых магнитных карт достаточно обширна. Помимо банковских систем, они используются в качестве компактного носителя информации, идентификатора автоматизированных систем учёта и контроля, удостоверения, пропуска, телефонной и Интернет карты, билета для проезда в транспорте.

3. Оптические носители

Непрерывный научно-технический поиск материальных носителей документированной информации с высокой долговечностью, большой информационной ёмкостью при минимальных физических размерах носителя обусловил появление оптических дисков, получивших в последнее время широкое распространение. Они представляют собой пластиковые или алюминиевые диски, предназначенные для записи или воспроизведения звука, изображения, буквенно-цифровой и другой информации при помощи лазерного луча.

Стандартные компакт-диски выпускаются диаметром 120 мм (4,75 дюйма), толщиной – 1,2 мм (0,05 дюйма), с диаметром центрального отверстия 15 мм (0,6 дюйма). Они имеют жёсткую очень прочную прозрачную, обычно пластиковую (поликарбонатную) основу толщиной 1мм. Однако возможно использование в качестве основы и других материалов, например, оптический носитель с основой из картона.

Рабочий слой оптических дисков на первых порах изготавливался в виде тончайших плёнок легкоплавких материалов (теллур) или сплавов (теллур-селен, теллур-углерод, теллур-свинец и др.), а в последствии – главным образом на основе органических красителей. Информация на CD фиксируется на рабочем слое в виде спиральной дорожки с помощью лазерного луча, выполняющего роль преобразователя сигналов. Дорожка идёт от центра диска к его периферии.

При вращении диска лазерный луч следует вдоль дорожки, ширина которой близка к 1 мкм, а расстояние между двумя соседними дорожками – до 1,6 мкм. Формируемые на диске лазерным лучом метки (питы) имеют глубину около пяти миллиардных долей дюйма, а площадь 1-3 мкм 2 . внутренний диаметр записи составляет 50 мм, наружный – 116 мм. Общая длина всей спиральной дорожки на диске составляет около 5 км. На каждый мм радиуса диска приходится 625 дорожек. Всего на диске располагается 20 тыс. витков спиральной дорожки.

Для хорошего отражения лазерного луча используется так называемое «зеркальное» покрытие дисков алюминием (в обычных дисках) или серебром (в записываемых и перезаписываемых). На металлическое покрытие наносится тонкий защитный слой из поликарбоната или специального лака, обладающей высокой механической прочностью, поверх которого размещаются рисунки и надписи. Нужно иметь в виду, что именно эта, окрашенная сторона диска является более уязвимой, нежели противоположная, с которой осуществляется считывание информации через всю толщину диска.

Технология изготовления оптических дисков является достаточно сложной. Вначале создаётся стеклянная матрица – основа диска. С этой целью пластик (поликарбонат) разогревается до 350 градусов, затем следует его «впрыскивание в форму, мгновенное охлаждение и автоматическая подача на следующую технологическую операцию. На стеклянный диск-оригинал наносится фоторегистрирующий слой. В этом слое лазерной системой записи формируется система Питов, т.е. создаётся первичный «мастер-диск». Затем по «мастер-диску» путём литья под давлением осуществляется массовое тиражирование, создание дисков-копий.

Информационная ёмкость дисков обычно составляет менее 650 Мбайт. На одном диске можно записать несколько сот тысяч страниц машинописного текста. Для сравнения: весь книжный фонд Российской государственной библиотеки, в случае его перевода на компакт-диски, можно уместить в обычной трёхкомнатной квартире. Между тем уже разработаны оптические диски и с гораздо большей ёмкостью – свыше 1 Гбайт.

Поскольку запись и воспроизведение информации на оптических дисках являются бесконтактными, постольку практически исключается возможность механического повреждения таких дисков.

Он также как и магнитный документ относится к современным носителя информации, основанным на оптических способах записи, считывания и воспроизведения. К оптическим документам относятся оптические диски и видеодиски: компакт-диски, CD-ROM, DVD-диск.

Схема конструкции оптического видеодиска: 1 - наружный слой из прозрачной пластмассы; 2 - металлизированная отражающая дорожка записи; 3 - твердая непрозрачная пластиковая основа.

На оптический диск информация записывается и считывается с помощью сфокусированного лазерного луча.

В зависимости от возможности использования для записи и считывания оптические диски делят на два вида:

1. WORM (Write Once Read Many) – накопители, предназначенные для записи информации и её хранения;

2. CD-ROM (Compact Disk Read Only Memory) - накопители, предназначенные для чтения информации.

Оптические диски можно разделить на типы:

· Аудио-компакт-диск - это диск с постоянной (нестираемой) звуковой информацией, записанной в двоичном коде;

· CD-ROM – диск с постоянной памятью, предназначенный для хранения и чтения значительных объёмов информации. Он содержит компьютерную информацию, которая считывается дисководом, подключённым к ПЭВМ;

· Видео-компакт-диск – диск, на котором в цифровой форме записывается текстовая, изобразительная и звуковая информация, а также программы ЭВМ;

· DVD-диск – разновидность нового поколения оптических дисков, на котором в цифровой форме записывается текстовая, видео и звуковая информация, а также компьютерные данные;

· Магнитооптический диск – диски состоящие из разных комбинаций гибкого магнитного диска, винчестера и оптического диска.

4. Носители на базе флэш-памяти

Один из самых современных и перспективных носителей документированной информации – твёрдотельная флэш-память, представляющая собой микросхему на кремниевом кристалле. Этот особый вид энергонезависимой перезаписываемой полупроводниковой памяти. Название связано с огромной скоростью стирания микросхемы флэш-памяти.

Для хранения информации флэш-носители не требуют дополнительной энергии, которая необходима только для записи. Причём по сравнению с жёсткими дисками и носителями CD-ROM для записи информации на флэш-носителях требуется в десятки раз меньше энергии, поскольку не нужно приводить в действие механические устройства, как раз и потребляющие большую часть энергии. Сохранение электрического заряда в ячейках флэш-памяти при отсутствии электрического питания обеспечивается с помощью так называемого плавающего затвора транзистора.

Носители на базе флэш-памяти могут хранить записанную информацию очень длительное время (от 20 до 100 лет). Будучи упакованы в прочный жёсткий пластиковый корпус, микросхемы флэш-памяти способны выдерживать значительные механические нагрузки (в 5-10 раз превышающие предельно допустимые для обычных жёстких дисков). Надёжность такого рода носителей обусловлена и тем, что они не содержат механически движущихся частей. В отличие от магнитных, оптических и магнитооптических носителей, здесь не требуется применение дисководов с использованием сложной прецизионной механики. Их отличает также бесшумная работа.

Кроме того, эти носители очень компактны.

Информацию на флэш-носителях можно изменять, т.е. перезаписывать. Помимо носителей с единственным циклом записи, существует флэш-память с количеством допустимых циклов записи/стирания до 10000, а также от 10000 до 100000 циклов. Все эти типы принципиально не отличаются друг от друга.

Несмотря на миниатюрные размеры, флэш-карты обладают большой ёмкостью памяти, составляющей многие сотни Мбайт. Они универсальны по своему применению, позволяя записывать и хранить любую цифровую информацию, в том числе музыкальную, видео- и фотографическую.

Флэш-память вошла в разряд основных носителей информации, широко используемых в разных цифровых мультимедийных устройствах – в портативных компьютерах, в принтерах, цифровых диктофонах, сотовых телефонах, электронных часах, записных книжках, телевизорах, кондиционерах, МРЗ-плеерах, в цифровых фото- и видеокамерах.

Флэш-карты являются одним из наиболее перспективных видов материальных носителей документированной информации. Уже разработаны карты нового поколения – Secure Digital, обладающие криптографическими возможностями защиты информации и высокопрочным корпусом, существенно снижающим риск повреждения носителя статистическим электричеством.

Выпущены карты ёмкостью 4 Гбайт. На них можно поместить около 4000 снимков высокого разрешения, или 1000 песен в формате МРЗ, или же полный DVD-фильм. Тем временем набирает свои обороты использования флэш-карта ёмкостью 8 Гбайт.

Налажено производство так называемых неподвижных флэш-дисков ёмкостью в сотни Мбайт, тоже представляющих собой устройство для хранения и транспортировки информации.

Таким образом, совершенствование технологии флэш-памяти идёт в направлении увеличения ёмкости, надёжности, компактности, многофункциональности носителей, а также снижения их стоимости.

5. Носители объёмного изображения

Голограмма современный носитель объёмного изображения.

Представляет собой документ, содержащий изображение, запись и воспроизведение которого производится оптическим способом с использованием лазерного луча без использования линз.

Голограмма создаётся с помощью голографии – метода точной записи, воспроизведения и преобразования волновых полей. Он основан на интерференции волн – явлении, наблюдаемом при сложении поперечных волн (световых, звуковых и др.) либо при усилении волн в одних точках документа и ослаблении в других в зависимости от разности фаз интерферирующих волн. На фотопластинку одновременно с «сигнальной» волной, рассеянной объектом, направляют «опорную» волну от того же источника света. Возникающая при интерференции этих волн картина, содержащая информацию об объекте, фиксируется на светочувствительной поверхности (голограмме). При облучении голограммы или её участка опорной волной можно увидеть объёмное изображение объекта.

Особенностью голографии является получение зрительного образа предмета, который обладает всеми признаками оригинала. При этом достигается полная иллюзия присутствия предмета.

На голограмме запись и воспроизведение информации производится при помощи лазера. Качество изображения зависит от монохроматичности излучения лазера и разрешающей способности фотоматериалов, используемых при получении голограмм. Если спектр излучения лазера широкий, то результирующая интерференционная картина будет не чёткой и размытой. Поэтому при изготовлении голограмм применяют лазеры с очень узкой спектральной линией излучения. На качество голографического изображения влияют условия съёмки, разрешающая способность фотоматериалов. Внешне голограмма напоминает засвеченный фотографический негатив, на которой нет никаких признаков «фотографируемого» предмета. Однако достаточно осветить голограмму лучом лазера как появляется объёмное изображение. Предметы находятся в глубине фотопластинки, как отражение в зеркале.

С помощью голографии можно получать такие объёмные изображения, которые создают полную иллюзию реальности наблюдаемых предметов – зрительное ощущение объемности и цвета, включая все оттенки цветов и ракурса. На голограмме изображение предмета настолько совершенно и правдоподобно, что наблюдатель воспринимает его как реально существующий предмет.

Голограмма может быть плоской или объёмной. Чем больше объём голограммы (толщина светочувствительной плёнки), тем лучше реализуются все её свойства.

Голограмма отличается от обычной фотографии так же, как скульптура от картины. В обычной фотографии точка изображения на фотопластинке соответствует некоторой точке объекта. В голографии каждая точка объекта испускает рассеянную волну, которая попадает на всю поверхность голограммы. В результате любая точка объекта соответствует всей поверхности голограммы: если разбирать фотопластинку, на которой зарегистрирована голограмма, любой её части достаточно для того, чтобы восстановить изображение рассеивающего объекта в трёх измерениях. Это напоминает ситуацию, когда разбивается объектив. С помощью любого из его осколков можно получить изображение предмета.

В голографии используется свойство когерентности лазерного луча: волновая поверхность (волновой фронт) некоторого луча записывается в форме интерференционных полос на светочувствительный материал или фотопластинку, которая называется голограммой. При считывании голограммы восстанавливается исходный волновой фронт. Иными словами, лазерный луч расщепляется на два луча, один из которых проецируется на объект съёмки, и, отражённый от этого объекта, свет попадает на светочувствительный материал; второй луч непосредственно проецируется на светочувствительный материал.

С помощью этих двух лучей записывается интерференционная картина. Когда на изготовленную голограмму проецируется лазерный луч, то всплывает объёмное изображение объекта съёмки. Этот процесс называется восстановлением. Если рассматривать голограмму в микроскоп, то видна система чередующихся светлых и тёмных полос. Интерференционный узор реальных объектов весьма сложен.

Голограмму можно изготовить и иным способом, благодаря которому объёмное изображение можно увидеть при обычном свете.

Поскольку голограмма позволяет записывать изображение вплоть до фазовых составляющих светового луча, то на ней можно хранить трёхмерную информацию об объекте съёмки. В настоящее время эта технология используется в считывателях штрихового кода, звукоснимателях для оптических дисков, также её можно успешно использовать для преобразования информации в оптических компьютерах.

Большинство разрабатываемых и внедряемых способов голографической регистрации и обработки информационных массивов имеют чаще всего вид печатных документов. Голограмма представляет собой оптический элемент, формирующий изображение без помощи внешней оптики, что является важнейшим преимуществом. На одну голограмму можно нанести до 150 изображений, причём эти изображения совершенно не мешают друг другу при их воспроизведении. Необходимо только соблюдать угол, под которым каждое изображение записывалось. Голограмма помехоустойчива, порча её некоторой части не приводит к потере всего изображения. Поскольку каждая точка объекта записывается практически на всей площади голограммы, царапины, пыль, посторонние включения в эмульсию вызывают лишь незначительные ухудшения изображения и снижение его яркости.

На квадратном сантиметре поверхности плёнки можно вместить 100 млн бит информации. А на пластинку калий-брома размером 2,5*2,5*0,2 см можно записать около 300 тысяч изображений документной информации, приблизительно целый архив большой библиотеки.

Изобретение голограмм имеет огромное значение. Развивающаяся вычислительная техника требует долговременных и запоминающих устройств с большим объёмом памяти. Электронная память успешно справляется с этой работой. Но ещё больше подходят для этих целей голографические системы памяти. Ёмкость голографической памяти может составить 10 6 – 10 8 бит. В течении микросекунд она выбирает данные из ячеек памяти.

Заключение

Рассмотрев данную тему можно сказать, что с развитием науки и техники будут появляться новые носители информации, более совершенные, которые будут вытеснять устаревшие носители информации, которые мы используем сейчас.

Широкое распространение оптических дисков связано с целым рядом их преимуществ по сравнению с магнитными носителями, а именно: высокая надёжность при хранении, большой объём сохраняемой информации, записывание на одном диске звуковой, графической и буквенно-цифровой, быстрота поиска, экономичное средство хранения и предоставления информации, они обладают хорошим соотношением «качество/цена».

Что же касается жестких дисков, то без них пока ещё ни один компьютер не обходился. В развитии жёстких дисков отчётливо прослеживается основная тенденция – постепенное повышение плотности записи, сопровождающееся увеличением скорости вращения шпиндельной головки и уменьшением времени доступа к информации, а в конечном счёте – увеличением производительности. Создание новых технологий постоянно усовершенствует этот носитель, он меняет свою ёмкость до 80 – 175 Гбайт. В более отдалённой перспективе ожидается появления носителя, в котором роль магнитных частиц будут играть отдельные атомы. В результате его ёмкость в миллиарды раз превысит существующие в настоящее время стандарты. Также есть одно преимущество утерянную информацию можно восстановить с помощью определённых программ.

Совершенствование технологии флэш-памяти идёт в направлении увеличения ёмкости, надёжности, компактности, многофункциональности носителей, а также снижения их стоимости.

На стадии разработки находятся голографические цифровые носители информации ёмкостью до 200 Гбайт. Они имеют форму диска, состоящего из трёх слоёв. На стеклянную подложку толщиной 0,5 мм наносится записывающий (рабочий) слой толщиной 0,2 мм и полумиллиметровый прозрачный защитный слой с отражающим покрытием.

Будущее развитие документа связано с компьютеризацией документно-коммуникационной системы, при этом традиционные виды документов сохранятся в информационном обществе наряду с нетрадиционными видами носителей информации, обогащая и дополняя друг друга.

Документы, будучи массовым общественным продуктом, отличаются сравнительно низкой долговечностью. Во время своего функционирования в оперативной среде и особенно при хранении они подвергаются многочисленным негативным воздействиям, а носители не только подвергаются повреждениям во внешней среде, они подвержены техническому (по уровню развития оборудования) и логическому (связано с содержанием информации, программным обеспечением и стандартам сохранности информации) старению.

В связи с этими факторами активно ведутся работы по созданию компактных носителей, работающих с атомами и молекулами. Плотность упаковки элементов, собранных из атомов, в тысячи раз больше, чем в современной микроэлектронике. В результате один компакт-диск, изготовленный по такой технологии, может заменить тысячи лазерных дисков.

Стремительное развитие новейших информационных технологий приводит, таким образом, к созданию всё новых, более информационно ёмких, надёжных и доступных по цене носителей документированной информации.

Будущие документоведы должны быть готовы к этому психологически, теоретически и технологически. Нам необходимо идти «в ногу со временем», так как документоведение неразрывно связано с информатикой, где наука не стоит на одном месте.

Когда-нибудь в России будет использоваться многофункциональный носитель, в котором будет храниться информация о человеке, позволяющий его использование одновременно как документ: устанавливающий личность, несущий в себе информацию банковских карт, медицинские данные о заболеваниях, его можно будет использовать в транспорте, библиотеке и т. д. Это всё будет возможным только при развитии документоведения, информатики, юриспруденции, и будет зависеть от людей готовы ли они к таким глобальным переменам.

Используемая литература:

1. ГОСТ З 51141-98. Делопроизводство и архивное дело. Термины и определения. М.: Изд-во стандартов, 1998.

2. Кушнаренко Н.Н. Документоведение. Учебник. – К.: Знання, 2006.

3. Ларьков Н.С. Документоведение. – М.: Восток-Запад, 2006.

4. Большая энциклопедия Кирилла и Мефодия на DVD. – ООО «Уральский электронный завод», 2007. Лиц. ВАФ № 77-15


ГОСТ З 51141-98. Делопроизводство и архивное дело. Термины и определения. М.: Изд-во стандартов, 1998.

Кушнаренко Н.Н. Документоведение. – К.: Знання, 2006. – С. 432.

Ларьков Н.С. Документоведение. – М.: Восток-Запад, 2006. – С. 174.

Большая энциклопедия Кирилла и Мефодия на DVD. – ООО «Уральский электронный завод», 2007. Лиц. ВАФ № 77-15

Кушнаренко Н.Н. Документоведение. – К.: Знання, 2006. – С. 451.

Потребность хранить какую-либо информацию у человека появилась еще в доисторические времена, чему яркий пример - наскальная живопись, которая сохранилась и по сей день. Наскальные рисунки можно по праву назвать самым износостойким носителем информации на данный момент, хотя с портативностью и удобством использования есть некоторые трудности. С появлением ЭВМ (и ПК в частности) разработка емких и удобных в использовании носителей информации стала особенно актуальной.

Бумажные носители

В первых компьютерах использовалась перфокарты и перфорированная бумажная лента, намотанная на бобины, так называемая перфолента. Ее прародителями были автоматизированные ткацкие станки, в частности машина Жаккара, финальный вариант которой был создан изобретателем (в честь которого она и названа) в 1808 году. Для автоматизации процесса подачи нитей использовались перфорированные пластины:

Перфокарты - картонные карточки, которые использовали подобный метод. Их было много разновидностей, как с отверстиями, которые отвечали за "1" в двоичном коде, так и текстового вида. Самым распространенным был формат IBM: размер карты составлял 187х83 мм, на ней инфомация располагалась в 12 строк и 80 столбцов. В современных терминах, одна перфокарта хранила 120 байт информации. Для ввода информации перфокарты нужно было подавать в определенной последовательности.

В перфоленте используется тот же принцип. Информация хранится на ней в виде отверстий. Первые компьютеры, созданные в 40-х годах прошлого века работали как с вводимыми с помощью перфоленты в реальном времени данными, так и использовали некое подобие оперативной памяти, преимущественно с использованием электронно-лучевых трубок. Бумажные носители активно использовались в 20-50 годах, после чего постепенно начали заменяться магнитными носителями.

Магнитные носители

В 50-х годах началось активное развитие магнитных носителей. За основу взято было явление электромагнетизма (образование магнитного поля в проводнике при пропускании тока через него). Магнитный носитель состоит из поверхности, покрытой ферромагнетиком и считывающей/пишущей головки (сердечник с обмоткой). По обмотке протекает ток, появляется магнитное поле определенной полярности (в зависимости от направления тока). Магнитное поле воздействует на ферромагнетик и магнитные частицы в нем поляризуются в направлении действия поля и создают остаточную намагниченность. Для записи данных на разные участки производится воздействие магнитным полем разной полярности, а при считывании данных регистрируются зоны, в которых изменяется направление остаточной намагниченности ферромагнетика. Первыми такими носителями были магнитные барабаны: большие металлические цилиндры, покрытые ферромагнетиком. Вокруг них устанавливались считывающие головки.

После них появился жесткий диск в 1956 году, это был 305 RAMAC компании IBM, который состоял из 50 дисков диаметром 60 см, по размером был соизмерим с большим холодильником современного формата Side-by-Side и весил чуть меньше тонны. Его объем составлял невероятные по тем временам 5 МБ. Головка свободно перемещалась по поверхности диска и скорость работы была выше, чем у магнитных барабанов. Процесс погрузки 305 RAMAC в самолет:

Объем быстро начал увеличиваться и в конце 60-х годов IBM выпустила высокоскоростной накопитель с двумя дисками емкостью по 30 МБ. Производители активно работали над уменьшением габаритов и к 1980 году жесткий диск имел размеры 5.25-дюймового привода. С тех времен конструкция, технологии, объем, плотность и размеры претерпели колоссальных изменений и самыми популярными стали форм-факторы и 3.5, 2.5 дюйма, в меньшей мере - 1.8 дюйма, а объемы уже достигают десятка терабайт на одном носителе.

Некоторое время использовался еще формат IBM Microdrive, который представлял из себя миниатюрный жесткий диск в форм-факторе карты памяти CompactFlash тип II. Выпущен в 2003 году, позже продан компании Hitachi.

Параллельно развивалась магнитная лента. Появилась она вместе с выходом первого американского коммерческого компьютера UNIVAC I в 1951 году. Опять же постаралась компания IBM. Магнитная лента представляла из себя тонкую пластиковую полосу с магниточувствительным покрытием. С тех времен использовалась в самых разных форм-факторах.

Начиная с бобин, ленточных картриджей и заканчивая компакт-кассетами и видеокассетами VHS. В компьютерах использовались начиная с 70 годов и заканчивая 90-ми (уже в значительно меньших количествах). Часто в качестве внешнего носителя к ПК использовался подключаемый магнитофон.

Накопители на магнитной ленте под названием Стримеры применяются и сейчас, преимущественно в промышленности и крупном бизнесе. На данный момент используются бобины стандарта Linear Tape-Open (LTO), а рекорд в этом году поставили IBM и FujiFilm, умудрившись записать на стандартную бобину 154 терабайта информации. Предыдущий рекорд - 2.5 терабайт, LTO 2012 года.

Еще один тип магнитных носителей - дискеты или флоппи-диск. Тут слой ферромагнетика наносится на гибкую, легкую основу и помещается в пластиковый корпус. Такие носители были просты с точки зрения изготовления и отличались невысокой стоимостью. Первая дискета имела форм-фактор 8 дюймов и появилась в конце 60-х. Создатель - опять IBM. К 1975 году емкость достигла 1 МБ. Хотя популярность дискеты заработали благодаря выходцам из IBM, которые основали собственную компанию Shugart Associates и в 1976 году выпустили дискету формата 5.25 дюйма, емкость составляла 110 КБ. К 1984 году емкость уже составляла 1.2 МБ, а Sony подсуетилась с более компактным форм-фактором 3.5 дюйма. Такие дискеты до сих пор можно найти у многих дома.

Компания Iomega выпустила в 1980-х картриджи с магнитными дисками Bernoulli Box, емкостью 10 и 20 МБ, а в 1994 году - так называемые Zip размера 3.5 дюйма объемом 100 МБ, до конца 90-х они достаточно активно использовались, но конкурировать с компакт-дисками им было не по зубам.

Оптические носители

Оптические носители имеют форму дисков, чтение с них ведется с помощью оптического излучения, обычно лазера. Луч лазера направляется на специальный слой и отражается от него. При отражении луч модулируется мельчайшими выемками на специальном слое, при регистрации и декодировании этих изменений восстанавливается записанная на диск информация. Впервые технологию оптической записи с использованием светопропускающего носителя была разработана Дэвидом Полом Греггом в 1958 году и запатентована в 1961 и 1990 годах, а в 1969 году компания Philips создала так называемый LaserDisc , в котором свет отражался. Впервые публике LaserDisc был показан в 1972 году, а в продажу поступил в 1978. По размеру он был близок к виниловым пластинкам и предназначался для фильмов.

В семидесятых годах началась разработка оптических носителей нового образца, в результате Philips и Sony представили в 1980 году формат CD (Compact Disk), который был впервые продемонстрирован в 1980 году. В продажу компакт-диски и аппаратура поступили в 1982 году. Изначально использовались для аудио, помещалось до 74 минут. В 1984 году Philips и Sony создали стандарт CD-ROM (Compact Disc Read Only Memory) для любых типов данных. Объем диска составлял 650 МБ, позже - 700 МБ. Первые диски, которые можно было записывать в домашних условиях, а не на заводе были выпущены в 1988 году и получили названиеCD-R (Compact Disc Recordable), а CD-RW, позволяющие многократную перезапись данных на диске, появились уже в 1997.

Форм-фактор не менялся, увеличивалась плотность записи. В 1996 году появился формат DVD (Digital Versatile Disc), который имел ту же форму и диаметр 12 см, а объем - 4.7 ГБ или 8.5 ГБ у двухслойного. Для работы с DVD-дисками были выпущены соответствующие приводы, обратно совместимые с CD. В последующие годы было выпущено еще несколько стандартов DVD.

В 2002 году миру были представлены два разных и несовместимых формата оптических дисков нового поколения: HD DVD и Blu-ray Disc (BD). В обоих случаях для записи и чтения данных используется голубой лазер с длинной волны 405 нм, что позволило еще увеличить плотность. HD DVD способен хранить 15 ГБ, 30 ГБ или 45 ГБ (один, два или три слоя), Blu-ray - 25, 50, 100 и 128 ГБ. Последний стал более популярен и 2008 году компания Toshiba (один из создателей) отказалась от HD DVD.

Полупроводниковые носители

В 1984 году компания Toshiba предложила полупроводниковые носители, так называемую флэш-память NAND, которая стала популярна спустя десятилетие после изобретения. Второй вариант NOR был предложен Intel в 1988 году и используется для хранения программных кодов, например BIOS. NAND-память используется сейчас в картах памяти , флэшках, SSD-накопителях и гибридных жестких дисках.

Технология NAND позволяет создавать чипы с высокой плотностью записи, она компактна, менее энергозатратна в использовании и имеет более высокую скорость работы (в сравнении с жесткими дисками). Основным минусом на данный момент является достаточно высокая стоимость.

Облачные хранилища

С развитием всемирной сети, увеличением скоростей и мобильного интернета появились многочисленные облачные хранилища, в которых данные хранятся на многочисленных распределенных в сети серверах. Данные хранятся и обрабатываются в так называемом виртуальном облаке и пользователь имеет к ним доступ при наличии доступа в интернет. Физически серверы могут находиться удаленно друг от друга. Есть как специализированные сервисы типа Dropbox, так и варианты компаний-производителей ПО или устройств. У Microsoft - OneDrive (ранее SkyDrive), iCloud у Apple, Google Диск и так далее.

Похожие статьи